切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 115 -117. doi: 10.3877/cma.j.issn.1674-0807.2019.02.010

所属专题: 文献

综述

三阴性乳腺癌发生机制的信号传导通路
韩丽飞1, 张亚男2,(), 胡浩霖2, 吕建鑫2, 曹欣华2   
  1. 1. 210009 南京,东南大学医学院外科医学系
    2. 东南大学附属中大医院普外科
  • 收稿日期:2017-10-29 出版日期:2019-04-01
  • 通信作者: 张亚男
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(81502287); 江苏省研究生科研与实践创新计划资助项目(3224008728)

Signal transduction pathways related to triple negative breast cancer

Lifei Han1, Yanan Zhang2(), Haolin Hu2   

  • Received:2017-10-29 Published:2019-04-01
  • Corresponding author: Yanan Zhang
引用本文:

韩丽飞, 张亚男, 胡浩霖, 吕建鑫, 曹欣华. 三阴性乳腺癌发生机制的信号传导通路[J]. 中华乳腺病杂志(电子版), 2019, 13(02): 115-117.

Lifei Han, Yanan Zhang, Haolin Hu. Signal transduction pathways related to triple negative breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(02): 115-117.

三阴性乳腺癌(TNBC)具有易转移与侵袭等特点,预后差,目前以化疗为主。TNBC的发生与多种信号通路有关,信号通路的激活参与了肿瘤发生、发展、侵袭和转移等多个环节。准确识别TNBC靶向治疗的有效靶点是临床科研中亟待解决的问题。因此,研究TNBC相关的信号通路对提高患者生存率具有重要意义。笔者着重介绍几种与TNBC发生机制相关的主要信号传导通路。

[1]
Dent R, Trudeau M, Pritchard KI, et al. Triple negative breast cancer: clinical features and patterns of recurrence [J]. Clin Cancer Res, 2007, 13:4429-4434.
[2]
Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry [J]. Cancer, 2007, 109(9):1721-1728.
[3]
王炳高,袁新颜,邢志博,等,三阴性乳腺癌组织STAT3、AR、MMP-13表达与预后状况的关系研究[J]. 癌症进展,2016, 14(6): 594-596.
[4]
袁芃.2016年美国临床肿瘤学会年会报道:三阴性乳腺癌研究新进展[J/CD].中华乳腺病杂志(电子版), 2016,10(5):264-268.
[5]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple negative breast cancer subtypes and preclinical models for selection of targeted therapies [J]. J Clin Invest, 2011, 121(7):2750-2767.
[6]
叶青,江泽飞. 三阴性乳腺癌精准治疗的机遇[J].中国肿瘤临床,2016, 43(24): 1074-1077.
[7]
Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer [J]. Nat Rev Drug Discov, 2009, 8(8):627-644.
[8]
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signaling [J]. Nat Rev Mol Cell Biol, 2010, 11(11): 329-341.
[9]
Deng M, Wang J, Chen Y, et al. Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT-mTOR pathway [J]. Anticancer Drugs, 2015, 26(4):422-427.
[10]
Bao GQ, Shen BY, Pan CP, et al. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer [J]. Toxicol Lett, 2013, 222(1): 23-35.
[11]
李甜,周钱梅,张卫红.PI3K/Akt/mTOR信号通路在三阴性乳腺癌治疗中的研究进展[J].中国肿瘤,2018,27(1):40-45.
[12]
Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials [J]. Pharmacol Ther, 2017, 175:91-106.
[13]
De P, Sun Y, Carlson JH, et al. Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness [J]. Neoplasia, 2014, 16(1):43-72.
[14]
Speiser J, Foreman K, Drinka E, et al. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer [J]. Int J Surg Pathol, 2012, 20(2): 139-145.
[15]
王蕾,李燕辉,吴士茜,等.三阴乳腺癌中Notch1和Wnt1的表达及其临床意义[J].实用心脑肺血管病杂志,2013,21(7):41-42.
[16]
Lafkas D, Rodilla V, Huyghe M, et al. Notch3 marks clonogenic mammary luminal progenitor cells in vivo[J]. J Cell Biol, 2013, 203(1): 47-56.
[17]
Naik S, MacFarlane M, Sarin A. Notch4 signaling confers susceptibility to TRAIL-induced apoptosis in breast cancer cells [J]. J Cell Biochem, 2015, 116(7): 1371-1380.
[18]
Nagamatsu I, Onishi H, Matsushita S, et al. NOTCH4 is a potential therapeutic target for triple-negative breast cancer [J].Anticancer Res, 2014, 34(1):69-80.
[19]
Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions [J]. J Biol Chem, 1991, 266(12): 7313-7316.
[20]
Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily [J].Trends Biochem Sci, 2002, 27(1): 19-26.
[21]
Warren MA, Shoemaker SF, Shealy DJ, et al. Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice [J]. Mol Cancer Ther, 2009, 8(9): 2655-2663.
[22]
Storci G, Sansone P, Mari S, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype [J]. J Cell Physiol, 2010, 225(3): 682-691.
[23]
Weichhaus M, Broom I, Bermano G. The molecular contribution of TNF-α in the link between obesity and breast cancer [J]. Oncol Rep, 2011, 25(2):477-483.
[24]
Kerstjens M, Driessen EM, Willekes M, et al. MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations [J]. Oncotarget, 2016, 8 (9): 14 835-14 846.
[25]
刘兆芸,贺科文,宋兴国,等.自噬抑制剂可增强三阴性乳腺癌细胞系MDA-MB-468和MDA-MB-231对吉非替尼的敏感性[J].中华肿瘤杂志,2016, 38(6): 417-424.
[26]
晏昱婧,胡小鹏,胡艺冰,等. 跨膜型TNF-α与NF-κB在三阴性乳腺癌中的表达及其意义[J]. 现代生物医学进展,2014, 14(15):2819-2822.
[27]
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics [J]. Oncogene, 2010, 29(5):625-634.
[28]
Zhang Y, Dai J, McNamara KM, et al. Prognostic significance of proline, glutamic acid, leucine rich protein 1 (PELP1) in triple-negative breast cancer: a retrospective study on 129 cases [J]. BMC Cancer, 2015, 15:699.
[29]
Regan Anderson TM, Ma SH, Raj GV, et al. Breast tumor kinase (Brk/PTK6) is induced by HIF, glucocorticoid receptor, and PELP1-mediated stress signaling in triple-negative breast cancer [J]. Cancer Res, 2016, 76(6):1653-1663.
[30]
Gucalp A, Traina TA. Targeting the androgen receptor in triple-negative breast cancer [J]. Curr Probl Cancer, 2016, 40(2-4):141-150.
[31]
杨满,韦伟.雄激素受体在乳腺癌治疗中的研究进展[J/CD].中华乳腺病杂志(电子版),2017,11(5):296-299.
[32]
Pietri E, Conteduca V, Andreis D, et al. Androgen receptor signaling pathways as a target for breast cancer treatment [J]. Endocr Relat Cancer, 2016, 23(10): R485-R498.
[33]
Gucalp A, Tolaney S, Isakoff SJ, et al. Phase Ⅱ trial of bicalutamide in patients with androgen receptor-positive estrogen receptor-negative metastatic breast cancer [J]. Clin Cancer Res, 2013, 19(19): 5505-5512.
[34]
Arce-salinas C, Riesco-maritne MC, Hanna W, et al. Complete response of metastatic androgen receptor positive breast cancer to bicalutamide: case report and review of the literature [J]. J Clin Oncol, 2016, 34(4): e21-e24.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
阅读次数
全文


摘要