切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 115 -117. doi: 10.3877/cma.j.issn.1674-0807.2019.02.010

所属专题: 文献

综述

三阴性乳腺癌发生机制的信号传导通路
韩丽飞1, 张亚男2,(), 胡浩霖2, 吕建鑫2, 曹欣华2   
  1. 1. 210009 南京,东南大学医学院外科医学系
    2. 东南大学附属中大医院普外科
  • 收稿日期:2017-10-29 出版日期:2019-04-01
  • 通信作者: 张亚男
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(81502287); 江苏省研究生科研与实践创新计划资助项目(3224008728)

Signal transduction pathways related to triple negative breast cancer

Lifei Han1, Yanan Zhang2(), Haolin Hu2   

  • Received:2017-10-29 Published:2019-04-01
  • Corresponding author: Yanan Zhang
引用本文:

韩丽飞, 张亚男, 胡浩霖, 吕建鑫, 曹欣华. 三阴性乳腺癌发生机制的信号传导通路[J/OL]. 中华乳腺病杂志(电子版), 2019, 13(02): 115-117.

Lifei Han, Yanan Zhang, Haolin Hu. Signal transduction pathways related to triple negative breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(02): 115-117.

三阴性乳腺癌(TNBC)具有易转移与侵袭等特点,预后差,目前以化疗为主。TNBC的发生与多种信号通路有关,信号通路的激活参与了肿瘤发生、发展、侵袭和转移等多个环节。准确识别TNBC靶向治疗的有效靶点是临床科研中亟待解决的问题。因此,研究TNBC相关的信号通路对提高患者生存率具有重要意义。笔者着重介绍几种与TNBC发生机制相关的主要信号传导通路。

[1]
Dent R, Trudeau M, Pritchard KI, et al. Triple negative breast cancer: clinical features and patterns of recurrence [J]. Clin Cancer Res, 2007, 13:4429-4434.
[2]
Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry [J]. Cancer, 2007, 109(9):1721-1728.
[3]
王炳高,袁新颜,邢志博,等,三阴性乳腺癌组织STAT3、AR、MMP-13表达与预后状况的关系研究[J]. 癌症进展,2016, 14(6): 594-596.
[4]
袁芃.2016年美国临床肿瘤学会年会报道:三阴性乳腺癌研究新进展[J/CD].中华乳腺病杂志(电子版), 2016,10(5):264-268.
[5]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple negative breast cancer subtypes and preclinical models for selection of targeted therapies [J]. J Clin Invest, 2011, 121(7):2750-2767.
[6]
叶青,江泽飞. 三阴性乳腺癌精准治疗的机遇[J].中国肿瘤临床,2016, 43(24): 1074-1077.
[7]
Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer [J]. Nat Rev Drug Discov, 2009, 8(8):627-644.
[8]
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signaling [J]. Nat Rev Mol Cell Biol, 2010, 11(11): 329-341.
[9]
Deng M, Wang J, Chen Y, et al. Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT-mTOR pathway [J]. Anticancer Drugs, 2015, 26(4):422-427.
[10]
Bao GQ, Shen BY, Pan CP, et al. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer [J]. Toxicol Lett, 2013, 222(1): 23-35.
[11]
李甜,周钱梅,张卫红.PI3K/Akt/mTOR信号通路在三阴性乳腺癌治疗中的研究进展[J].中国肿瘤,2018,27(1):40-45.
[12]
Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials [J]. Pharmacol Ther, 2017, 175:91-106.
[13]
De P, Sun Y, Carlson JH, et al. Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness [J]. Neoplasia, 2014, 16(1):43-72.
[14]
Speiser J, Foreman K, Drinka E, et al. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer [J]. Int J Surg Pathol, 2012, 20(2): 139-145.
[15]
王蕾,李燕辉,吴士茜,等.三阴乳腺癌中Notch1和Wnt1的表达及其临床意义[J].实用心脑肺血管病杂志,2013,21(7):41-42.
[16]
Lafkas D, Rodilla V, Huyghe M, et al. Notch3 marks clonogenic mammary luminal progenitor cells in vivo[J]. J Cell Biol, 2013, 203(1): 47-56.
[17]
Naik S, MacFarlane M, Sarin A. Notch4 signaling confers susceptibility to TRAIL-induced apoptosis in breast cancer cells [J]. J Cell Biochem, 2015, 116(7): 1371-1380.
[18]
Nagamatsu I, Onishi H, Matsushita S, et al. NOTCH4 is a potential therapeutic target for triple-negative breast cancer [J].Anticancer Res, 2014, 34(1):69-80.
[19]
Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions [J]. J Biol Chem, 1991, 266(12): 7313-7316.
[20]
Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily [J].Trends Biochem Sci, 2002, 27(1): 19-26.
[21]
Warren MA, Shoemaker SF, Shealy DJ, et al. Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice [J]. Mol Cancer Ther, 2009, 8(9): 2655-2663.
[22]
Storci G, Sansone P, Mari S, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype [J]. J Cell Physiol, 2010, 225(3): 682-691.
[23]
Weichhaus M, Broom I, Bermano G. The molecular contribution of TNF-α in the link between obesity and breast cancer [J]. Oncol Rep, 2011, 25(2):477-483.
[24]
Kerstjens M, Driessen EM, Willekes M, et al. MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations [J]. Oncotarget, 2016, 8 (9): 14 835-14 846.
[25]
刘兆芸,贺科文,宋兴国,等.自噬抑制剂可增强三阴性乳腺癌细胞系MDA-MB-468和MDA-MB-231对吉非替尼的敏感性[J].中华肿瘤杂志,2016, 38(6): 417-424.
[26]
晏昱婧,胡小鹏,胡艺冰,等. 跨膜型TNF-α与NF-κB在三阴性乳腺癌中的表达及其意义[J]. 现代生物医学进展,2014, 14(15):2819-2822.
[27]
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics [J]. Oncogene, 2010, 29(5):625-634.
[28]
Zhang Y, Dai J, McNamara KM, et al. Prognostic significance of proline, glutamic acid, leucine rich protein 1 (PELP1) in triple-negative breast cancer: a retrospective study on 129 cases [J]. BMC Cancer, 2015, 15:699.
[29]
Regan Anderson TM, Ma SH, Raj GV, et al. Breast tumor kinase (Brk/PTK6) is induced by HIF, glucocorticoid receptor, and PELP1-mediated stress signaling in triple-negative breast cancer [J]. Cancer Res, 2016, 76(6):1653-1663.
[30]
Gucalp A, Traina TA. Targeting the androgen receptor in triple-negative breast cancer [J]. Curr Probl Cancer, 2016, 40(2-4):141-150.
[31]
杨满,韦伟.雄激素受体在乳腺癌治疗中的研究进展[J/CD].中华乳腺病杂志(电子版),2017,11(5):296-299.
[32]
Pietri E, Conteduca V, Andreis D, et al. Androgen receptor signaling pathways as a target for breast cancer treatment [J]. Endocr Relat Cancer, 2016, 23(10): R485-R498.
[33]
Gucalp A, Tolaney S, Isakoff SJ, et al. Phase Ⅱ trial of bicalutamide in patients with androgen receptor-positive estrogen receptor-negative metastatic breast cancer [J]. Clin Cancer Res, 2013, 19(19): 5505-5512.
[34]
Arce-salinas C, Riesco-maritne MC, Hanna W, et al. Complete response of metastatic androgen receptor positive breast cancer to bicalutamide: case report and review of the literature [J]. J Clin Oncol, 2016, 34(4): e21-e24.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?