切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 306 -311. doi: 10.3877/cma.j.issn.1674-0807.2018.05.010

所属专题: 文献

综述

乳腺癌内分泌治疗耐药分子机制的研究进展
汤琦1, 陈德滇1, 蔡尚立1, 张钰梓1, 聂建云1, 周绍强1,()   
  1. 1. 650118 昆明,云南省肿瘤医院 昆明医科大学第三附属医院乳腺二科
  • 收稿日期:2018-01-05 出版日期:2018-10-01
  • 通信作者: 周绍强
  • 基金资助:
    国家自然科学基金资助项目(81360392); 云南省医疗卫生单位内设研究科研机构科研项目(2016NS080); 云南省肿瘤医院博士科研启动基金资助项目(BSJJ201505)

Molecular mechanism of resistance to endocrine therapy in breast cancer patients

Qi Tang1, Dedian Chen1, Shangli Cai1   

  • Received:2018-01-05 Published:2018-10-01
引用本文:

汤琦, 陈德滇, 蔡尚立, 张钰梓, 聂建云, 周绍强. 乳腺癌内分泌治疗耐药分子机制的研究进展[J]. 中华乳腺病杂志(电子版), 2018, 12(05): 306-311.

Qi Tang, Dedian Chen, Shangli Cai. Molecular mechanism of resistance to endocrine therapy in breast cancer patients[J]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(05): 306-311.

乳腺癌内分泌治疗针对激素受体阳性乳腺癌患者,但内分泌治疗的疗效却受到耐药的限制。随着高通量二代测序技术和基因组学研究的进展,乳腺癌内分泌治疗耐药的分子机制得到深入研究。ESR1基因、细胞生长旁路途径、细胞周期检查点等发生改变均可能导致乳腺癌的内分泌治疗耐药。目前,针对其中某些与肿瘤发生、发展和转移密切相关的分子靶点已研制出新型的靶向药物。利用靶向治疗联合内分泌治疗来克服特定人群的内分泌治疗耐药现象,可为激素受体阳性乳腺癌患者的精准治疗提供更多的选择。笔者就乳腺癌内分泌治疗耐药的分子机制及其可能克服耐药的靶向治疗进行综述。

[1]
邵志敏,沈镇宙,徐兵河. 乳腺肿瘤学[M]. 上海: 复旦大学出版社, 2013: 10.
[2]
Gu G,Dustin D,Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment[J]. Curr Opin Pharmacol, 2016, 31: 97-103.
[3]
Hsu JL,Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer[J]. Cancer Metastasis Rev, 2016, 35(4): 575-588.
[4]
连婧,马海霞,白玮, 等. 乳腺癌的分子分型及其临床病理特征[J/CD]. 中华乳腺病杂志(电子版), 2016, 10(3): 183-184.
[5]
National Comprehensive Cancer Network. National Comprehensive Cancer Network guidelines for breast cancer[EB/OL].[2018-01-05].

URL    
[6]
Ma CX,Reinert T,Chmielewska I, et al. Mechanisms of aromatase inhibitor resistance[J]. Nat Rev Cancer, 2015, 15(5): 261-275.
[7]
Pritchard KI. Endocrine therapy: is the first generation of targeted drugs the last? [J]. J Intern Med, 2013, 274(2): 144-152.
[8]
Farzaneh S,Zarghi A. Estrogen receptor ligands: a review (2013-2015) [J]. Sci Pharm, 2016, 84(3): 409-427.
[9]
Toy W,Weir H,Razavi P, et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists[J]. Cancer Discov, 2016, 7(3): 277-287.
[10]
Pejerrey SM,Dustin D,Kim JA, et al. The impact of ESR1 mutations on the treatment of metastatic breast cancer[EB/OL]. [2018-05-07].

URL    
[11]
Toy W,Shen Y,Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer[J]. Nat Genet, 2013, 45(12): 1439-1445.
[12]
Robinson DR,Wu YM,Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer[J]. Nat Genet, 2013, 45(12): 1446-1451.
[13]
Li S,Shen D,Shao J, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts[J]. Cell Rep, 2013, 4(6): 1116-1130.
[14]
Fanning SW,Mayne CG,Dharmarajan V, et al. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation[J]. Elife, 2016, 5: e12792.
[15]
Jeselsohn R,Yelensky R,Buchwalter G, et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer[J]. Clin Cancer Res, 2014, 20(7): 1757-1767.
[16]
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70.
[17]
Bartels S,Christgen M,Luft A, et al. Estrogen receptor (ESR1) mutation in bone metastases from breast cancer[J]. Mod Pathol, 2018, 31(1): 56-61.
[18]
Cristofanilli M,Turner NC,Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial[J]. Lancet Oncol, 2016, 17(4): 425-439.
[19]
Fribbens C,O’Leary B,Kilburn L, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer[J]. J Clin Oncol, 2016, 34(25): 2961-2968.
[20]
Fei M,Yan Z,Quchang O, et al. Mutation signature of patients with ER+ metastatic breast cancer who received endocrine therapy[EB/OL].[2018-05-20].

URL    
[21]
Wang P,Bahreini A,Gyanchandani R, et al. Sensitive detection of mono- and polyclonal esr1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients[J]. Clin Cancer Res, 2016, 22(5): 1130-1137.
[22]
Johnston SR,Kilburn LS,Ellis P, et al. Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): A composite, multicentre, phase 3 randomised trial[J]. Lancet Oncol, 2013, 14(10): 989-998.
[23]
Chandarlapaty S,Chen D,He W, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 Clinical Trial[J]. JAMA Oncol, 2016, 2(10): 1310-1315.
[24]
Hartmaier RJ,Trabucco SE,Priedigkeit N, et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer[J]. Ann Oncol, 2018, 29(4): 872-880.
[25]
Tokunaga E,Hisamatsu Y,Tanaka K, et al. Molecular mechanisms regulating the hormone sensitivity of breast cancer[J]. Cancer Sci, 2014, 105(11): 1377-1383.
[26]
Frogne T,Benjaminsen RV,Sonne-Hansen K, et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant[J]. Breast Cancer Res Treat, 2009, 114(2): 263-275.
[27]
Formisano L,Young CD,Bhola N, et al. FGFR1 is associated with resistance to interaction with estrogen receptor (ER) α endocrine therapy in ER+/FGFR1-amplified breast cancer[EB/OL].[2017-01-05].

URL    
[28]
Matà R,Palladino C,Nicolosi ML, et al. IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway[J]. Oncotarget, 2016, 7(7): 7683-7700.
[29]
García-Becerra R,Santos N,Díaz L, et al. Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance[J]. Int J Mol Sci, 2012, 14(1): 108-145.
[30]
Zhao M,Ramaswamy B. Mechanisms and therapeutic advances in the management of endocrine-resistant breast cancer[J]. World J Clin Oncol, 2014, 5(3): 248-262.
[31]
Nardone A,De Angelis C,Trivedi MV, et al. The changing role of ER in endocrine resistance[J]. Breast, 2015, 24(2): S60-66.
[32]
Lau KM,To KF. Importance of estrogenic signaling and its mediated receptors in prostate cancer[J]. Int J Mol Sci, 2016, 17(9): 1434.
[33]
Garee JP,Chien CD,Li JV, et al. Regulation of HER2 oncogene transcription by a multifunctional coactivator/corepressor complex[J]. Mol Endocrinol, 2014, 28(6): 846-859.
[34]
Rondón-Lagos M,Villegas VE,Rangel N, et al. Tamoxifen resistance: emerging molecular targets[J]. Int J Mol Sci, 2016, 17(8): 1357.
[35]
Kavarthapu R,Dufau ML. Role of EGF/ERBB1 in the transcriptional regulation of the prolactin receptor independent of estrogen and prolactin in breast cancer cells[J]. Oncotarget, 2016, 7(40): 65 602-65 613.
[36]
Arpino G,Wiechmann L,Osborne CK. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance[J]. Endocr Rev, 2008, 29(2): 217-233.
[37]
Lousberg L,Collignon J,Jerusalem G. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies[J]. Ther Adv Med Oncol, 2016, 8(6): 429-449.
[38]
Shou J,Massarweh S,Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer[J]. J Natl Cancer Inst, 2004, 96(12): 926-935.
[39]
Milani A,Geuna E,Mittica G, et al. Overcoming endocrine resistance in metastatic breast cancer: Current evidence and future directions[J]. World J Clin Oncol, 2014, 5(5): 990-1001.
[40]
Lonard DM,O’Malley BW. Molecular pathways: targeting steroid receptor coactivators in cancer[J]. Clin Cancer Res, 2016, 22(22): 5403-5407.
[41]
Lee A,Guler B,Sun X, et al. Oestrogen receptor is a critical component required for insulin-like growth factor (IGF)-mediated signalling and growth in MCF-7 cells[J]. Eur J Cancer, 2000, 36(Suppl 4): 109-110.
[42]
Azim H,Piccart M. Simultaneous targeting of estrogen receptor and HER2 in breast cancer[J]. Expert Rev Anticancer Ther, 2010, 10(8): 1255-1263.
[43]
Cardoso F,Costa A,Norton L, et al. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2) [J]. Ann Oncol, 2014, 25(10): 1871-1888.
[44]
Ro J,Pippen J,Pivot X, et al. Safety of first-line letrozole compared with lapatinib plus letrozole in patients with postmenopausal hormone receptor positive metastatic breast cancer: EGF30008 study[EB/OL].[2018-01-05].

URL    
[45]
Bose R,Kavuri SM,Searleman AC, et al. Activating HER2 mutations in HER2 gene amplif cation negative breast cancer[J]. Cancer Discov, 2013, 3(2): 1-14.
[46]
Prové A,Dirix L. Neratinib for the treatment of breast cancer[J]. Expert Opin Pharmacother, 2016, 17(16): 2243-2248.
[47]
Deluche E,Onesti E,Andre F. Precision medicine for metastatic breast cancer[J]. Am Soc Clin Oncol Educ Book, 2015, 35: e2-7.
[48]
Osborne CK,Neven P,Dirix LY, et al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase Ⅱ study[J]. Clin Cancer Res, 2011, 17(5): 1147-1159.
[49]
Cristofanilli M,Valero V,Mangalik A, et al. Phase Ⅱ, randomized trial to compare anastrozole combined with gefitinib or placebo in postmenopausal women with hormone receptor-positive metastatic breast cancer[J]. Clin Cancer Res, 2010, 16(6): 1904-1914.
[50]
Guerrero-Zotano A,Mayer IA,Arteaga CL.PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment[J]. Cancer Metastasis Rev, 2016, 35(4): 1-10.
[51]
Thorpe LM,Yuzugullu H,Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting[J]. Nat Rev Cancer, 2015, 15(1): 7-24.
[52]
Arthur LM,Turnbull AK,Renshaw L, et al. Changes in PIK3CA mutation status are not associated with recurrence, metastatic disease or progression in endocrine-treated breast cancer[J]. Breast Cancer Res Treat, 2014, 147(1): 211-219.
[53]
Ciriello G,Gatza ML,Beck AH, et al. Comprehensive molecular portraits of invasive lobular breast cancer [J]. Cell, 2015, 163(2): 506-519.
[54]
Lauring J,Park BH,Wolff AC. The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer[J]. J Natl Compr Canc Netw, 2013, 11(6): 670-678.
[55]
Bosch A,Li Z,Bergamaschi A, et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer[J]. Sci Transl Med, 2015, 7(283): 283ra51.
[56]
Moynahan ME,Chen D,He W, et al. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2- advanced breast cancer: results from BOLERO-2[J]. Br J Cancer, 2017, 116(6): 726-730.
[57]
Schwartz S,Wongvipat J,Trigwell CB, et al. Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ[J]. Cancer Cell, 2015, 27(1): 109-122.
[58]
Baselga J,Im SA,Iwata H, et al. PIK3CA status in circulating tumor DNA (ctDNA) predicts efficacy of buparlisib (BUP) plus fulvestrant (FULV) in postmenopausal women with endocrine-resistant HR+/HER2- advanced breast cancer (BC): first results from the randomized, phase Ⅲ BELLE-2 trial[J]. Cancer Res, 2016, 76(4 Suppl): S6.
[59]
Dickler MN,Saura C,Richards DA, et al. A phase Ⅱ study of the PI3K inhibitor taselisib (GDC-0032) combined with fulvestrant (F) in patients (pts) with HER2-negative (HER2-), hormone receptor-positive (HR+) advanced breast cancer (BC) [J]. J Clin Oncol, 2016, 34(15): 520.
[60]
Baselga J,Dent SF,Cortés J, et al. Phase Ⅲ study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): Primary analysis from SANDPIPER[EB/OL].[2018-01-05].

URL    
[61]
Fritsch C,Huang A,Chatenay-Rivauday C, et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials[J]. Mol Cancer Ther, 2014, 13(5): 1117-1129.
[62]
Rugo HS,Bianchi GV,Chia SK, et al. BYLieve: a phase Ⅱ study of alpelisib (ALP) with fulvestrant (FUL) or letrozole (LET) for treatment of PIK3CA mutant, hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (aBC) progressing on/after cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) therapy[EB/OL].[2018-01-05].

URL    
[63]
Tomiguchi M,Yamamoto Y,Yamamoto-Ibusuki M, et al. Fibroblast growth factor receptor-1 protein expression is associated with prognosis in estrogen receptor-positive/human epidermal growth factor receptor-2-negative primary breast cancer[J]. Cancer Sci, 2016, 107(4): 491-498.
[64]
André F,Bachelot T,Campone M, et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer[J]. Clin Cancer Res, 2013, 19(13): 3693-3702.
[65]
Robertson JF,Ferrero JM,Bourgeois H, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomized, controlled, double-blind, phase 2 trial[J]. Lancet Oncol, 2013, 14(3): 228-235.
[66]
Murphy CG,Dickler MN. The role of CDK4/6 inhibition in breast cancer[J]. Oncologist, 2015, 20(5): 483-490.
[67]
Murphy CG,Dickler MN. Endocrine resistance in hormone-responsive breast cancer: mechanisms and therapeutic strategies[J]. Endocr Relat Cancer, 2016, 23(8): R337-R352.
[68]
Vélez-Cruz R,Manickavinayaham S,Biswas AK, et al. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1[J]. Genes Dev, 2016, 30(22): 2500-2512.
[69]
Finn RS,Crown JP,Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study[J]. Lancet Oncol, 2015, 16(1): 25-35.
[70]
Otto T,Sicinski P. Cell cycle proteins as promising targets in cancer therapy[J]. Nat Rev Cancer, 2017, 27, 17(2): 93-115.
[71]
Ellis MJ,Llombart-Cussac A,Feltl D, et al. Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: overall survival analysis from the phase Ⅱ first study[J]. J Clin Oncol, 2015, 33(32): 3781-3787.
[72]
Angus L,Beije N,Jager A, et al. ESR1 mutations: moving towards guiding treatment decision-making in metastatic breast cancer patients[J]. Cancer Treat Rev, 2017, 52: 33-40.
[73]
Selli C,Dixon JM,Sims AH. Accurate prediction of response to endocrine therapy in breast cancer patients: current and future biomarkers[J]. Breast Cancer Res, 2016, 18(1): 118.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[11] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[12] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[13] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[14] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[15] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
阅读次数
全文


摘要