切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (06) : 369 -371. doi: 10.3877/cma.j.issn.1674-0807.2017.06.010

综述

微RNA 221/222 在乳腺癌中的研究进展
韩晓翠1, 左晓丽1, 李敏2, 宋波2,3,()   
  1. 1.266033 山东省青岛市海慈医疗集团病理科
    2.116044 大连医科大学病理学与法医学教研室
    3.116044 大连医科大学病理学与形态学实验室
  • 收稿日期:2016-05-16 出版日期:2017-12-01
  • 通信作者: 宋波

Research progress of miRNA 221 / 222 in breast cancer

Xiaocui Han, Xiaoli Zuo, Min Li, Bo Song()   

  • Received:2016-05-16 Published:2017-12-01
  • Corresponding author: Bo Song
引用本文:

韩晓翠, 左晓丽, 李敏, 宋波. 微RNA 221/222 在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2017, 11(06): 369-371.

Xiaocui Han, Xiaoli Zuo, Min Li, Bo Song. Research progress of miRNA 221 / 222 in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2017, 11(06): 369-371.

微RNA (miRNA)是细胞内源性长度为19 ~25 个核苷酸的单链非编码小RNA 分子,广泛存在于真核生物中,通过碱基互补配对的方式对多个靶基因表达起负调控作用,激活下游信号通路,影响肿瘤的发生、发展、侵袭、转移和耐药等生物学过程。 其中,微RNA 221/222(miR-221/222)在乳腺癌细胞的增殖、侵袭、转移以及耐药等过程中发挥着重要作用。 笔者就近年来miR-221/222 在乳腺癌方面的研究进展做一综述。

[1]
Balmant NV, de Souza Reis R, Pinto Oliveira JF, et al. Cancer incidence among adolescents and young adults (15 to 29 years) in Brazil [J]. J Pediatr Hematol Oncol,2016,38(3):88-96.
[2]
Lee RC, Feinbaum RL. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J].Cell,1993,75(5):843-854.
[3]
Piva R, Spandidos DA. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (review) [J]. Int J Oncol,2013,43(4):985-994.
[4]
Li Y, Di C, Li W, et al. Erratum to: oncomirs miRNA-221/222 and tumor suppressors miRNA199a/-195 are crucial miRNAs in liver cancer: a systematic analysis [J]. Dig Dis Sci,2016,61(11):3373.
[5]
Cho WC. Exploiting the therapeutic potential of microRNAs in human cancer[J]. Expert Opin Ther Targets,2012,16(4):345-350.
[6]
Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1 [J]. J Biol Chem, 2007, 282(32):23 716-23 724.
[7]
Dentelli P, Traversa M, Rosso A, et al. miR-221/222 control luminal breast cancer tumor progression by regulating different targets [J]. Cell Cycle,2014,13(11):1811-1826.
[8]
Zhao JJ, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer [J]. J Biol Chem,2016,291:22 859.
[9]
Slattery ML, Lundgreen A, Kadlubar SA, et al. JAK/STAT/SOCSsignaling pathway and colon and rectal cancer [J]. Mol Carcinog,2013,52(2):155-166.
[10]
Li Y,Liang C,Ma H,et al. miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer [ J].Molecules,2014,19:7122-7137.
[11]
le Sage C, Nagel R, Egan DA, et al. Regulation of the p27(Kip1)tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation[J]. EMBO J,2007,26(15):3699-3708.
[12]
Visone R,Russo L,Pallante P,et al. MicroRNA -221 (miR-221) and miR-222, both overexpressed in human thyroid papillary carcinomas,regulate p27Kip1 protein levels and cell cycle [J]. Endocr Relat Cancer,2007,14(3):791-798.
[13]
Lu Y, Roy S, Nuovo G, et al. Anti-microRNA-222 (anti-miR-222)and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal [J]. J Biol Chem,2011,286(49):42292-42302
[14]
Wang H, Xu C, Kong X, et al. Trail resistance induces epithelial mesenchymal transition and enhances invasiveness by suppressing PTEN via miR-221 in breast cancer [J]. PLoS One,2014,9(6):99 067.
[15]
Stinson S,Lackner MR,Adai AT,et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer[J]. Sci Signal,2011,4(177):ra41.
[16]
Ye X,Bai W,Zhu H,et al. MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN[J].BMB Rep,2014,47(5):268-273.
[17]
Dentelli P, Traversa M, Rosso A, et al. miR-221/222 control luminal breast cancer tumor progression by regulating different targets [J]. Cell Cycle,2014,13(11):1811-1826.
[18]
Yao Y, Chen S, Zhou X, et al. 5-FU and ixabepilone modify the microRNA expression profiles in MDA-MB-453 triple-negative breast cancer cells [J]. Oncol Lett,2014,7(2):541-547.
[19]
Wei Y, Lai X, Yu S, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells [J].Breast Cancer Res Treat,2014,147(2):423-431.
[20]
Gan R, Yang Y, Yang X, et al. Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3 [J]. Cancer Gene Ther, 2014, 21 (7):290-296.
[21]
Knutson TP, Truong TH, Ma S, et al. Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs[J]. J Hematol Oncol, 2017,10(1):89.
[22]
Ke J, Zhao Z, Hong SH, et al. Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells[J]. Oncotarget,2015,6(6):3709-3721.
[23]
Ginestier C,Hur MH,Charafe-Jauffret E,et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome [J]. Cell Stem Cell,2007,1(5):555-567.
[24]
Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer[J]. Clin Cancer Res,2010,16(1):45-55.
[25]
Bertoli G, Cava C, Castiglioni I. MicroRNAs as biomarkers for diagnosis, prognosis and theranostics in prostate cancer [J]. Int J Mol Sci,2016,17(3):421.
[26]
Li B, Lu Y, Wang H, et al. miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway[J]. Biomed Pharmacother,2016,79:93-101.
[27]
Roscigno G, Quintavalle C, Donnarumma E, et al. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b [J]. Oncotarget,2016,7(1):580-592.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要