切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2016, Vol. 10 ›› Issue (01) : 20 -24. doi: 10.3877/cma.j.issn.1674-0807.2016.01.005

论著

乳腺癌化疗药物紫杉醇、表柔比星、环磷酰胺对小鼠认知功能的影响
姚婉茹1, 任健1, 何嘉琦2, 孙海晨1, 刘爽1, 赵越1, 罗斌1,3,()   
  1. 1.100053 北京,首都医科大学宣武医院普通外科
    2.100091 北京101中学
    3.102218 北京清华长庚医院普通外科
  • 收稿日期:2015-07-22 出版日期:2016-02-01
  • 通信作者: 罗斌
  • 基金资助:
    北京市医院管理局215高层次卫生技术人才学科带头人项目(2013-2-032)

Effect of paclitaxel, epirubicin and cyclophosphamide used for breast cancer chemotherapy on cognition function of mice

Wanru Yao1, Jian Ren1, Jiaqi He2, Haichen Sun1, Shuang Liu1, Yue Zhao1, Bin Luo1,3,()   

  1. 1.Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053,China
    2.Beijing 101 Middle School, Beijing 100091, China
    3.Department of General Surgery, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
  • Received:2015-07-22 Published:2016-02-01
  • Corresponding author: Bin Luo
引用本文:

姚婉茹, 任健, 何嘉琦, 孙海晨, 刘爽, 赵越, 罗斌. 乳腺癌化疗药物紫杉醇、表柔比星、环磷酰胺对小鼠认知功能的影响[J/OL]. 中华乳腺病杂志(电子版), 2016, 10(01): 20-24.

Wanru Yao, Jian Ren, Jiaqi He, Haichen Sun, Shuang Liu, Yue Zhao, Bin Luo. Effect of paclitaxel, epirubicin and cyclophosphamide used for breast cancer chemotherapy on cognition function of mice[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2016, 10(01): 20-24.

目的

探究乳腺癌化疗常用药物紫杉醇、表柔比星、环磷酰胺对小鼠认知功能的影响。

方法

本研究运用随机数字表法将Balb/c 小鼠分为4 组,每组20 只,实验组小鼠分别腹腔注射紫杉醇(30 mg/kg)、表柔比星(10 mg/kg)、环磷酰胺(200 mg/kg),对照组小鼠给予注射等体积的0.9%NaCl 溶液。 给药4 周后进行Morris 水迷宫定位航行实验和空间探索实验,分别记录小鼠找到水下平台的时间(即逃避潜伏期),在目标象限时间占总时间的比率及穿越目标象限的次数。 逃避潜伏期比较采用重复测量的方差分析,目标象限时间占总时间的比率比较采用单因素方差分析, 穿越平台次数比较用Kruskal-Wallis 秩和检验。

结果

在定位航行实验中,实验组和对照组小鼠在5 个时间点(给药后第1、2、3、4、5 天)的逃避潜伏期均随训练天数增加而逐渐缩短,呈下降趋势(F=11.25,P=0.001)。 紫杉醇组、表柔比星组、环磷酰胺组与对照组小鼠逃避潜伏期差异无统计学意义,不同时间点差异有统计学意义(组间比较:F=1.23,P=0.251;时间点比较:F=5.94,P<0.001;组别与时间点的交互作用:F=0.77,P=0.676)。 空间探索实验中,小鼠在目标象限的时间所占总时间的比率组间差异有统计学意义(F=3.26,P=0.027);与对照组相比,环磷酰胺组在目标象限的时间占总时间的比率降低(13.6%±8.9% 比23.9%±13.9%, t=- 3.05,P=0.009)。 各组小鼠穿越平台次数差异无统计学意义(χ2 =1.86,P=0.602)。

结论

环磷酰胺可降低小鼠的空间记忆能力,部分化疗药有可能改变小鼠的空间学习记忆能力。

Objective

To explore the effects of paclitaxel, epirubicin and cyclophosphamide, which are widely used in breast cancer chemotherapy, on the cognition function of mice.

Methods

Totally 80 Balb/c mice were randomized into four groups, 20 mice in each group. The mice in 3 experimental groups were intraperitoneally injected with paclitaxel (30 mg/kg), epirubicin (10 mg/kg), or cyclophosphamide alone(200 mg/kg) respectively. The mice in control group were injected with isovolumic saline. At 4 weeks after injection, all groups were given Morris water maze test, including place navigation and spatial probe test, to record the time the mice spent on underwater platform (escape latency), the ratio of time in every quadrant to total swimming time and the times of crossing the platforma. The escape latencies of mice were compared among groups using repeated measurement analysis of variance, the ratio of time in every quadrant to total swimming time was compared using univariate analysis of variance and the times of crossing the platform among groups were compared using Kruskal-Wallis rank sum test.

Results

In place navigation test, the escape latencies at 5 time points (on days 1,2,3,4,5 after injection) in four groups were decreased with training time, which showed a trend of decline (F=11.25, P=0.001). There was no statistically significant difference in escape latency between paclitaxel/ epirubicin/cyclophosphamide-treated group and control group, while escape latencies were significantly different at 5 time points (comparison between groups: F=1.23, P=0.251;comparison at different time points: F=5.94, P <0.001; interaction between grouping and different time points: F=0.77, P=0.676). In spatial probe test, the ratio of time spent in every quadrant to the total swimming time in 4 groups presented a significant difference (F=3.26, P=0.027); it was significantly lower in cyclophosphamide-treated group than that in control group (13.6%±8.9% vs 23.9%±13.9%;t=- 3.05,P=0.009). The difference was not statistically significant between experimental groups and control group in the times of crossing the platform on the sixth day after injection(χ2 = 1.86,P = 0.602).

Conclusions

Cyclophosphamide can affect the memory maintenance of mice. There is a possibility that chemotherapy medication can affect the ability of spatial cognition and learning in mice.

表1 化疗药物对小鼠学习记忆能力的影响
表2 化疗药物对小鼠空间探索能力的影响
[1]
Silberfarb PM. Chemotherapy and cognitive defects in cancer patients[J]. Annu Rev Med,1983,34:35-46.
[2]
Janelsins MC, Kohli S, Mohile SG, et al. An update on cancer- and chemotherapy-related cognitive dysfunction: current status[J]. Semin Oncol,2011,38(3):431-438.
[3]
Cheung YT, Tan EH, Chan A. An evaluation on the neuropsychological tests used in the assessment of postchemotherapy cognitive changes in breast cancer survivors[J]. Support Care Cancer,2012,20(7):1361-1375.
[4]
de Ruiter MB, Reneman L, Boogerd W, et al. Late effects of highdose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging[J]. Hum Brain Mapp,2012,33(12):2971-2983.
[5]
Deprez S, Amant F, Smeets A, et al. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning[J]. J Clin Oncol,2012,30(3):274-281.
[6]
Kohli S, Fisher SG, Tra Y, et al. The effect of modafinil on cognitive function in breast cancer survivors[J]. Cancer,2009,115(12):2605-2616.
[7]
施新猷. 医用实验动物学[M]. 西安:陕西科学技术出版社,1989:396-397.
[8]
Hodgson KD, Hutchinson AD, Wilson CJ, et al. A meta-analysis of the effects of chemotherapy on cognition in patients with cancer [J].Cancer Treat Rev,2013,39(3):297-304.
[9]
Silverman DH, Dy CJ, Castellon SA, et al. Altered frontocortical,cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy[J]. Breast Cancer Res Treat,2007,103(3):303-311.
[10]
Calvio L, Peugeot M, Bruns GL, et al. Measures of cognitive function and work in occupationally active breast cancer survivors[J]. J Occup Environ Med,2010,52(2):219-227.
[11]
Deprez S, Amant F, Yigit R, et al. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients [J]. Hum Brain Mapp,2011,32(3):480-493.
[12]
Squire LR, van der Horst AS, Mcduff SG, et al. Role of the hippocampus in remembering the past and imagining the future [J].Proc Natl Acad Sci U S A,2010,107(44):19 044-19 048.
[13]
Janelsins MC, Roscoe JA, Berg MJ, et al. IGF-1 partially restores chemotherapy-induced reductions in neural cell proliferation in adult C57BL/6 mice [J]. Cancer Invest,2010,28(5):544-553.
[14]
Winocur G, Vardy J, Binns MA, et al. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice[J]. Pharmacol Biochem Behav,2006,85(1):66-75.
[15]
Dietrich J. Chemotherapy associated central nervous system damage[J]. Adv Exp Med Biol,2010,678:77-85.
[16]
Ahles TA,Saykin AJ. Candidate mechanisms for chemotherapy-induced cognitive changes [J]. Nat Rev Cancer,2007,7(3):192-201.
[17]
Janelsins MC, Mustian KM, Palesh OG, et al. Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research[J].Support Care Cancer,2012,20(4):831-839.
[18]
Tangpong J, Cole MP, Sultana R, et al. Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity[J]. Neurobiol Dis,2006,23(1):127-139.
[19]
Joshi G, Aluise CD, Cole MP, et al. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain [J]. Neuroscience, 2010, 166 (3):796-807.
[20]
Marsland AL, Gianaros PJ, Abramowitch SM, et al. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults [J]. Biol Psychiatry,2008,64(6):484-490.
[21]
Mcafoose J, Baune BT. Evidence for a cytokine model of cognitive function [J]. Neurosci Biobehav Rev,2009,33(3):355-366.
[22]
Konat GW, Kraszpulski M, James I, et al. Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats[J]. Metab Brain Dis,2008,23(3):325-333.
[23]
Gandal MJ, Ehrlichman RS, Rudnick ND, et al. A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice[J]. Neuroscience,2008,157(1):95-104.
[24]
Briones TL, Woods J. Dysregulation in myelination mediated by persistent neuroinflammation: possible mechanisms in chemotherapyrelated cognitive impairment [J]. Brain Behav Immun,2014,35:23-32.
[25]
Mu L, Wang J, Cao B, et al. Impairment of cognitive function by chemotherapy: association with the disruption of phase-locking and synchronization in anterior cingulate cortex [J]. Mol Brain,2015,8:32.
[26]
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat[J]. J Neurosci Methods,1984,11(1):47-60.
[27]
Maei HR, Zaslavsky K, Wang AH, et al. Development and validation of a sensitive entropy-based measure for the water maze[J]. Front Integr Neurosci,2009,3:33.
[28]
D'Hooge R,De Deyn PP. Applications of the Morris water maze in the study of learning and memory[J]. Brain Res Brain Res Rev, 2001,36(1):60-90.
[29]
Williams MT, Morford LL, Wood SL, et al. Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory[J]. Synapse,2003,48(3):138-148.
[30]
Patil SS, Sunyer B, Hoger H, et al. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze[J]. Behav Brain Res,2009,198(1):58-68.
[31]
Van Dam D, Lenders G, De Deyn PP. Effect of Morris water maze diameter on visual-spatial learning in different mouse strains [J].Neurobiol Learn Mem,2006,85(2):164-172.
[32]
Zhou SJ, Zhu ME, Shu D, et al. Preferential enhancement of working memory in mice lacking adenosine A(2A) receptors [J]. Brain Res,2009,1303:74-83.
[33]
Campeau S, Liberzon I, Morilak D, et al. Stress modulation of cognitive and affective processes [J]. Stress,2011,14(5):503-519.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要