切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2015, Vol. 09 ›› Issue (03) : 198 -201. doi: 10.3877/cma.j.issn.1674-0807.2015.03.009

综述

丝裂原活化蛋白激酶信号通路在乳腺癌中的作用机制
李贤勇1, 税晓容1, 黄胜超1, 李建文1,()   
  1. 1.524000 湛江,广东医学院附属医院血管甲状腺乳腺外科
  • 收稿日期:2015-03-19 出版日期:2015-06-01
  • 通信作者: 李建文
  • 基金资助:
    国家自然科学基金资助项目(81403044)

Mitogen-activated protein kinase signaling pathway in breast cancer

Xianyong Li, Xiaorong Shui, Shengchao Huang, Jianwen Li()   

  • Received:2015-03-19 Published:2015-06-01
  • Corresponding author: Jianwen Li
引用本文:

李贤勇, 税晓容, 黄胜超, 李建文. 丝裂原活化蛋白激酶信号通路在乳腺癌中的作用机制[J/OL]. 中华乳腺病杂志(电子版), 2015, 09(03): 198-201.

Xianyong Li, Xiaorong Shui, Shengchao Huang, Jianwen Li. Mitogen-activated protein kinase signaling pathway in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2015, 09(03): 198-201.

图1 MAPK 信号通路示意图 注:Raf 为Ras 相关因子1;Mos、Tp12 为主要的促进信号传递的因子;PI3K 为磷脂酰肌醇3 激酶;Akt 为蛋白激酶B;S6K 为小亚基核糖体蛋白S6 激酶;MLK 为混合谱系激酶;ASK1:细胞凋亡信号调节激酶1;TAK 为TGF-β 活化蛋白激酶;DLK 为双亮氨酸链形激酶;ERK为细胞外信号调节激酶;MAPK 为丝裂原活化蛋白激酶;MAPKK 为丝裂原活化蛋白激酶激酶; MAPKKK 为丝裂原活化蛋白激酶激酶激酶;MEK 为MAPK/ERK 激酶;JNK 为c-Jun 氨基末端激酶;BMK1 为ERK5
[1]
Paplomata E, O'Regan R.The PI3K/AKT/mTOR pathway in breast cancer:targets,trials and biomarkers[J].Ther Adv Med Oncol,2014,6(4):154-166.
[2]
Jiang Y, Zhao X, Xiao Q, et al.Snail and Slug mediate tamoxifen resistance in breast cancer cells through activation of EGFR-ERK independent of epithelial-mesenchymal transition[J].J Mol Cell Biol,2014,6(4):352-354.
[3]
Heckler MM, Thakor H, Schafer CC, et al.ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer[J].FEBS J,2014,281(10):2431-2442.
[4]
Joo WD, Visintin I, Mor G.Targeted cancer therapy--are the days of systemic chemotherapy numbered? [J].Maturitas,2013,76(4):308-314.
[5]
Moerkens M, Zhang Y, Wester L, et al.Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation[J].BMC Cancer,2014,14:283.
[6]
Bergamaschi A,Katzenellenbogen BS.Tamoxifen downregulation of miR-451 increases 14-3-3ζ and promotes breast cancer cell survival and endocrine resistance [J].Oncogene, 2012,31(1):39-47.
[7]
Adams BD,Cowee DM,White BA.The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells [J].Mol Endocrinol,2009,23(8):1215-1230.
[8]
Zhao Y, Deng C, Lu W, et al.let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor α signaling in breast cancer[J].Mol Med, 2011, 17(11-12):1233-1241.
[9]
Ghayad SE, Vendrell JA, Ben Larbi S, et al.Endocrine resistance associated with activated ErbB system in breast cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling pathways[J].Int J Cancer,2010,126(2):545-562.
[10]
Oh AS, Lorant LA, Holloway JN, et al.Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells[J].Mol Endocrinol,2001,15(8):1344-1359.
[11]
Chen J, Hou R, Zhang X, et al.Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R,p38 MAPK and PI3K/Akt pathways[J].PLoS One, 2014,9(3):e91245.
[12]
Chen J, Sun L.Formononetin-induced apoptosis by activation of Ras/p38 mitogen-activated protein kinase in estrogen receptor-positive human breast cancer cells [J].Horm Metab Res,2012,44(13):943-948.
[13]
Hashimoto K, Tsuda H, Koizumi F, et al.Activated PI3K/AKT and MAPK pathways are potential good prognostic markers in node-positive, triple-negative breast cancer[J].Ann Oncol,2014,25(10):1973-1979.
[14]
Gholami S, Chen CH, Gao S, et al.Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer[J].Cancer Gene Ther,2014,21(7):283-289.
[15]
Eralp Y, Derin D, Ozluk Y, et al.MAPK overexpression is associated with anthracycline resistance and increased risk for recurrence in patients with triple-negative breast cancer[J].Ann Oncol,2008,19(4):669-674.
[16]
Ward KR, Zhang KX, Somasiri AM, et al.Expression of activated M-Ras in a murine mammary epithelial cell line induces epithelial-mesenchymal transition and tumorigenesis[J].Oncogene,2004,23(6):1187-1196.
[17]
Hoeflich KP, O'Brien C, Boyd Z, et al.In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models [J].Clin Cancer Res, 2009,15(14):4649-4664.
[18]
Jing J, Greshock J, Holbrook JD, et al.Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212[J].Mol Cancer Ther,2012,11(3):720-729.
[19]
Mirzoeva OK, Das D, Heiser LM, et al.Basal subtype and MAPK/ERK kinase ( MEK )-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition[J].Cancer Res,2009,69(2):565-572.
[20]
Balko JM, Cook RS, Vaught DB, et al.Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance[J].Nat Med,2012,18(7):1052-1059.
[21]
Martin EC, Krebs AE, Burks HE, et al.miR-155 induced transcriptome changes in the MCF-7 breast cancer cell line leads to enhanced mitogen activated protein kinase signaling[J].Genes Cancer,2014,5(9-10):353-364.
[22]
Bayraktar S, Glück S.Molecularly targeted therapies for metastatic triple-negative breast cancer [J].Breast Cancer Res Treat,2013,138(1):21-35.
[23]
Kümler I, Tuxen MK, Nielsen DL.A systematic review of dual targeting in HER2-positive breast cancer [J].Cancer Treat Rev,2014,40(2):259-270.
[24]
Huang L, Chen T, Chen C, et al.Prognostic and predictive value of Phospho-p44/42 and pAKT in HER2-positive locally advanced breast cancer patients treated with anthracyclinebased neoadjuvant chemotherapy[J].World J Surg Oncol,2013,11:307.
[25]
Donnelly SM, Paplomata E, Peake BM, et al.P38 MAPK contributes to resistance and invasiveness of HER2-overexpressing breast cancer [J].Curr Med Chem, 2014,21(4):501-510.
[26]
Duman BB, Sahin B, Acikalin A, et al.PTEN, Akt, MAPK,p53 and p95 expression to predict trastuzumab resistance in HER2 positive breast cancer[J].J BUON, 2013, 18(1):44-50.
[27]
Aksamitiene E, Kholodenko BN, Kolch W, et al.PI3K/Aktsensitive MEK-independent compensatory circuit of ERK activation in ER-positive PI3K-mutant T47D breast cancer cells[J].Cell Signal,2010,22(9):1369-1378.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要