切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2012, Vol. 06 ›› Issue (03) : 322 -327. doi: 10.3877/cma. j. issn.1674-0807.2012.03.014

讲座

MicroRNAs 在乳腺癌中作用的研究进展
田焕1, 覃伟2, 刘鹏熙1,   
  1. 1.510120 广州,广东省中医院乳腺科
    2.415100 湖南常德,中南大学附属广德临床学院
  • 收稿日期:2011-02-23 出版日期:2012-06-01
  • 通信作者: 刘鹏熙

Research advances in role of microRNAs in breast cancer

Huan TIAN, Wei QIN, Peng-xi LIU   

  • Received:2011-02-23 Published:2012-06-01
  • Corresponding author: Peng-xi LIU
引用本文:

田焕, 覃伟, 刘鹏熙. MicroRNAs 在乳腺癌中作用的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2012, 06(03): 322-327.

Huan TIAN, Wei QIN, Peng-xi LIU. Research advances in role of microRNAs in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2012, 06(03): 322-327.

[1]
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci,2004,101(9):2999-3004.
[2]
Qi L, Bart J, Tan LP, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma[J]. BMC Cancer,2009,9:163.
[3]
Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth[J]. Oncogene,2007,26(19):2799-2803.
[4]
Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells[J]. J Biol Chem,2008,283(2):1026-1033.
[5]
Yan LX, Huang XF,Shao Q,et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis[J]. RNA,2008,14(11):2348-2360.
[6]
Bourguignon LY, Spevak CC, Wong G, et al. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells[J]. J Biol Chem,2009,284(39):26 533-26 546.
[7]
Chen GQ, Zhao ZW, Zhou HY, et al. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin[J]. Med Oncol,2010,27(2):406-415.
[8]
Mei M, Ren Y, Zhou X, et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells[J]. Technol Cancer Res Treat,2010,9(1):77-86.
[9]
Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer [J]. J Biol Chem,2010,285(23):17 869-17 879.
[10]
Jiang S, Zhang HW, Lu MH, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene [J]. Cancer Res,2010,70(8):3119-3127.
[11]
Jiang S, Zhang HW, Lu MH, et al.MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene[J]. Cancer Res,2010,70(8),3119-3172.
[12]
Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA[J]. Mol Cell Biol,2008,28(22):6773-6784.
[13]
Johnson CD, Esquela Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells [J]. Cancer Res,2007,67(16):7713-7722.
[14]
Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene[J]. Genes Dev,2007,21(9):1025-1030.
[15]
Dangi Garimella S, Yun J, Eves EM, et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7[J]. EMBO,2009,28(4):347-358.
[16]
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer [J]. Cancer Res,2005,65(16):7065-7070.
[17]
Zhao Y, Deng C, Wang J, et al. Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer[J]. Breast Cancer Res Treat,2011,127(1):69-80.
[18]
Salter KH, Acharya CR, Walters KS, et al. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer[J]. PLoS One,2008,3(4):1-8.
[19]
Yang, N, Kaur, S, Volinia, S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer[J].Cancer Res,2008,68(24):10307-10314.
[20]
Cloonan N, Brown MK, Steptoe AL, et al. The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition[J]. Genome Biol,2008,9(8):R127.
[21]
Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation [J].Cell Biol,2008,182(3):509-517.
[22]
Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA[J].Mol Cell Biol,2006,26(21):8191-8201.
[23]
Fontana L, Fiori ME, Albini S, et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM [J]. PLoS ONE,2008,3(5):e2236.
[24]
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol,2008,10(5):593-601.
[25]
Hurteau GJ,Carlson JA,Spivack SD,et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin [J]. Cancer Res,2007,67(17):7972-7976.
[26]
Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells [J]. EMBO Rep,2008,9(6):582-589.
[27]
Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis[J]. Cell,2009,137(6):1032-1046.
[28]
Valastyan S, Benaich N, Chang A, et al. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis [J].Genes Dev,2009,23(22):2592-2597.
[29]
Ma L, Teruya FJ, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J].Nature,2007,449(7163):682-688.
[30]
Moriarty CH, Pursell B, Mercurio AM. MiR-10b targets Tiam1: implications for Rac activation and carcinoma migration[J]. J Biol Chem,2010,285(27):20541-20546.
[31]
Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model[J].Nat Biotechnol,2010,28(4):341-347.
[32]
Gee HE,Camps C,Buffa FM,et al. MicroRNA-10b and breast cancer metastasis [J]. Natu re,2008,455(7216):E8-E9.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要