[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
[2] |
中国抗癌协会乳腺癌专业委员会. 中国乳腺癌筛查与早期诊断指南[J]. 中国癌症杂志, 2022, 32(4): 363-372.
|
[3] |
Xia C, Basu P, KramerBS, et al. Cancer screening in China: a steep road from evidence to implementation[J]. Lancet Public Health,2023,8(12): e996-e1005.
|
[4] |
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024 年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
|
[5] |
Dembrower K, Liu Y, Azizpour H, et al. Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction[J]. Radiology, 2020, 294(2): 265-272.
|
[6] |
Pashayan N, Antoniou AC, Ivanus U, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement[J]. Nat Rev Clin Oncol, 2020, 17(11): 687-705.
|
[7] |
Gastounioti A, Desai S, Ahluwalia VS, et al. Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review[J]. Breast Cancer Res, 2022, 24(1): 14.
|
[8] |
Monticciolo DL, Newell MS, Moy L, et al. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR[J]. J Am Coll Radiol, 2018, 15(3): 408-414.
|
[9] |
SmithRA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2019: a review of current American Cancer Society guidelines and current issues in cancer screening[J]. CA Cancer J Clin, 2019, 69(3): 184-210.
|
[10] |
BrentnallAR, Cohn WF, Knaus WA,et al. A case-control study to add volumetric or clinical mammographic density into the Tyrer-Cuzick breast cancer risk model[J]. J Breast Imaging, 2019, 1(2): 99-106.
|
[11] |
Ahn JS, Shin S,Yang SA,et al. Artificial intelligence in breast cancer diagnosis and personalized medicine [J]. J Breast Cancer, 2023,26(5): 405-435.
|
[12] |
Bahl M. Harnessing the power of deep learning to assess breast cancer risk[J]. Radiology, 2020, 294(2): 273-274.
|
[13] |
Huang S, Xu JT, Yang M. Review: predictive approaches to breast cancer risk[J]. Heliyon, 2023, 9(11): e21344.
|
[14] |
EngmannNJ, Golmakani MK, Miglioretti DL, et al. Populationattributable risk proportion of cinical risk factors for breast cancer[J].JAMA Oncol, 2017, 3(9): 1228-1236.
|
[15] |
Zheng Y, Dong X, Li J, et al. Use of breast cancer risk factors to identify risk-adapted starting age of screening in China[J]. JAMA Netw Open, 2022, 5(11): e2241441.
|
[16] |
张晓辉, 孙强, 李炎, 等. 中国女性乳腺癌预防专家共识[J]. 中国研究型医院, 2022, 9(4): 5-13.
|
[17] |
Cuzick J, Sestak I, ThoratMA. Impact of preventive therapy on the risk of breast cancer among women with benign breast disease[J]. Breast,2015, 24 (2): S51-S55.
|
[18] |
BrandtKR, Scott CG, Ma L, et al. Comparison of clinical and automated breast density measurements: implications for risk prediction and supplemental screening[J]. Radiology, 2016, 279(3): 710-719.
|
[19] |
BaeJM, Kim EH. Breast density and risk of breast cancer in Asian women: a meta-analysis of observational studies[J]. J Prev Med Public Health, 2016, 49(6): 367-375.
|
[20] |
BaeMS, Moon WK, Chang JM, et al. Breast cancer detected with screening US: reasons for nondetection at mammography [ J].Radiology, 2014, 270(2): 369-377.
|
[21] |
WandersJO, Holland K,Veldhuis WB,et al. Volumetric breast density affects performance of digital screening mammography [J]. Breast Cancer Res Treat, 2017, 162(1): 95-103.
|
[22] |
VisscherDW, Frost MH, Hartmann LC, et al. Clinicopathologic features of breast cancers that develop in women with previous benign breast disease[J]. Cancer, 2016, 122(3): 378-385.
|
[23] |
SalamatFM, Niakan BM,Keshtkar AP,et al. Subtypes of benign breast disease as a risk factor of breast cancer: a systematic review and meta analyses[J]. Iran J Med Sci, 2018, 43(4): 355-364.
|
[24] |
ShiyanbolaOO, Arao RF, Miglioretti DL, et al. Emerging trends in family history of breast cancer and associated risk [J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(12): 1753-1760.
|
[25] |
Mahdavi M, Nassiri M,Kooshyar MM,et al. Hereditary breast cancer;Genetic penetrance and current status with BRCA[J]. J Cell Physiol,2019, 234(5): 5741-5750.
|
[26] |
Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually[J]. J Natl Cancer Inst,1989,81(24):1879-1886.
|
[27] |
Crispo A, D'aiuto G, De Marco M, et al. Gail model risk factors:impact of adding an extended family history for breast cancer[J]. Breast J, 2008, 14(3): 221-227.
|
[28] |
Rockhill B, Spiegelman D,Byrne C,et al. Validation of the Gail et al.model of breast cancer risk prediction and implications for chemoprevention[J]. J Natl Cancer Inst, 2001, 93(5): 358-366.
|
[29] |
Terry MB, Liao Y, Whittemore AS, et al. 10-year performance of four models of breast cancer risk: a validation study[J]. Lancet Oncol,2019, 20(4): 504-517.
|
[30] |
Tice JA, Cummings SR,Smith-Bindman R,et al. Using clinical factors and mammographic breast density to estimate breast cancer risk:development and validation of a new predictive model[J]. Ann Intern Med, 2008, 148(5): 337-347.
|
[31] |
Gard CC, Tice JA, Miglioretti DL, et al. Extending the breast cancer surveillance consortium model of invasive breast cancer[J]. J Clin Oncol, 2024,42(7):779-789.
|
[32] |
Vilmun BM, Vejborg I,Lynge E,et al. Impact of adding breast density to breast cancer risk models: a systematic review[J]. Eur J Radiol,2020, 127: 109019.
|
[33] |
BrentnallAR, Cuzick J,Buist DSM,et al. Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density[J]. JAMA Oncol, 2018, 4(9): e180174.
|
[34] |
Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2[J]. Nature, 1995, 378(6559):789-792.
|
[35] |
BerryDA, Parmigiani G, Sanchez J, et al. Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history[J]. J Natl Cancer Inst, 1997, 89(3): 227-238.
|
[36] |
Parmigiani G, Berry D,Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2[J]. Am J Hum Genet, 1998, 62(1): 145-158.
|
[37] |
Claus EB, Risch N,Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction[J]. Cancer,1994, 73(3): 643-651.
|
[38] |
Antoniou AC, Pharoah PP, Smith P, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancer[J]. Br J Cancer,2004, 91(8): 1580-1590.
|
[39] |
Lee A, Mavaddat N,Cunningham A,et al. Enhancing the BOADICEA cancer risk prediction model to incorporate new data on RAD51C,RAD51D, BARD1 updates to tumour pathology and cancer incidence[J]. J Med Genet, 2022, 59(12): 1206-1218.
|
[40] |
Lee A, Mavaddat N, Wilcox AN, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors[J]. Genet Med, 2019, 21(8): 1708-1718.
|
[41] |
Jin Z, Zhang S, Zhang L, et al. Artificial intelligence risk model(Mirai) delivers robust generalization and outperforms Tyrer-Cuzick guidelines in breast cancer screening[J]. J Clin Oncol, 2022, 40(20): 2280-2281.
|
[42] |
Eriksson M, Czene K, Vachon C, et al. Long-term performance of an image-based short-term risk model for breast cancer[J]. J Clin Oncol,2023, 41(14): 2536-2545.
|
[43] |
ArasuVA, Habel LA, Achacoso NS, et al. Comparison of mammography AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: an observational study[J]. Radiology, 2023,307(5): e222733.
|
[44] |
Yala A, Mikhael PG, Strand F, et al. Toward robust mammographybased models for breast cancer risk [J]. Sci Transl Med, 2021,13(578): eaba4373.
|
[45] |
Yala A, Mikhael PG,Strand F,et al. Multi-Institutional validation of a mammography-based breast cancer risk model[J]. J Clin Oncol,2022,40(16): 1732-1740.
|
[46] |
Wang X,Tan T, Gao Y, et al. Predicting up to 10 year breast cancer risk using longitudinal mammographic screening history[J]. medRxiv,2023: 2023.06. 28.23291994.
|
[47] |
Dadsetan S, Arefan D, Berg WA, et al. Deep learning of longitudinal mammogram examinations for breast cancer risk prediction[EB/OL].[2024-01-15].https:/ /www.medrxiv.org/content/10.1101/2023.06.28.23291994v1.
|
[48] |
Kretz T, Mueller KR, Schaeffter T, et al. Mammography image quality assurance using deep learning[J]. IEEE Trans Biomed Eng, 2020,67(12): 3317-3326.
|
[49] |
Tice JA, Bissell MCS, Miglioretti DL, et al. Validation of the breast cancer surveillance consortium model of breast cancer risk[J]. Breast Cancer Res Treat, 2019, 175(2): 519-523.
|
[50] |
Fischer C, Kuchenbäcker K, Engel C, et al. Evaluating the performance of the breast cancer genetic risk models BOADICEA,IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium[J]. J Med Genet,2013, 50(6): 360-367.
|