切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 231 -234. doi: 10.3877/cma.j.issn.1674-0807.2024.04.007

综述

组蛋白乳酸化修饰及其在乳腺癌中的研究进展
姚宁宁1, 蒋丽2, 张小霞3, 陆玉成1,()   
  1. 1. 276000 山东省临沂市人民医院生物样本库
    2. 276000 山东省临沂市人民医院甲状腺外科
    3. 276000 山东省临沂市人民医院乳腺科
  • 收稿日期:2023-11-24 出版日期:2024-08-01
  • 通信作者: 陆玉成
  • 基金资助:
    山东省自然基金面上项目(ZR2023MH292); 徐州医科大学附属医院发展基金(XYFM202346)

Histone lactation modification and its research progress in breast cancer

Ningning Yao, Li Jiang, Xiaoxia Zhang   

  • Received:2023-11-24 Published:2024-08-01
引用本文:

姚宁宁, 蒋丽, 张小霞, 陆玉成. 组蛋白乳酸化修饰及其在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 231-234.

Ningning Yao, Li Jiang, Xiaoxia Zhang. Histone lactation modification and its research progress in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(04): 231-234.

表观遗传修饰的改变在乳腺癌的发生与发展过程中发挥着重要作用,而组蛋白修饰是表观遗传修饰的主要类型之一。有氧糖酵解为癌细胞的无限增殖提供能量,糖酵解产生的乳酸能够促进组蛋白乳酸化修饰的发生,进而影响乳腺癌的发生发展进程。因此,抑制组蛋白乳酸化修饰的发生能够提高乳腺癌的治疗效果。本文将对组蛋白乳酸化修饰以及其在乳腺癌中的最新研究进展进行综述。

图1 组蛋白的乳酸化修饰
[1]
IARC. Global cancer burden growing, amidst mounting need for services [M]. Lyon:International Agency for Research on Cancer,2024.
[2]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 202474(3):229-263.
[3]
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer[J]. Nat Rev Dis Primers20195(1):66.
[4]
Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin202373(4):376-424.
[5]
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature2019574(7779):575-580.
[6]
Millan-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications - cause and consequence of genome function[J]. Nat Rev Genet202223(9):563-580.
[7]
Wang N, Wang W, Wang X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res2022131(11):893-908.
[8]
Moreno-Yruela C, Baek M, Monda F, et al. Chiral posttranslational modification to lysine epsilon-amino groups[J]. Acc Chem Res202255(10):1456-1466.
[9]
Yang Z, Yan C, Ma J, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma[J]. Nat Metab20235(1):61-79.
[10]
Xie Y, Hu H, Liu M, et al. The role and mechanism of histone lactylation in health and diseases[J]. Front Genet202213:949252.
[11]
Xu H, Wu M, Ma X, et al. Function and mechanism of novel histone posttranslational modifications in health and disease[J]. Biomed Res Int20212021:6635225.
[12]
Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease[J]. Signal Transduct Target Ther20227(1):305.
[13]
Jiang P, Ning W, Shi Y, et al. FSL-Kla: a few-shot learning-based multi-feature hybrid system for lactylation site prediction[J]. Comput Struct Biotechnol J202119:4497-4509.
[14]
Bhagat TD, Von Ahrens D, Dawlaty M, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts[J]. Elife20198:e50663.
[15]
Sun K, Tang S, Hou Y, et al. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling[J]. EBioMedicine201941:370-383.
[16]
Qiu Z, Wang L, Liu H. Hsa_circ_0001982 promotes the progression of breast cancer through miR-1287-5p/MUC19 axis under hypoxia[J]. World J Surg Oncol202119(1):161.
[17]
Castagnoli L, Iorio E, Dugo M, et al. Intratumor lactate levels reflect HER2 addiction status in HER2-positive breast cancer[J]. J Cell Physiol2019234(2):1768-1779.
[18]
Longhitano L, Forte S, Orlando L, et al. The crosstalk between GPR81/IGFBP6 promotes breast cancer progression by modulating lactate metabolism and oxidative stress[J]. Antioxidants (Basel)202211(2):275.
[19]
Brown TP, Bhattacharjee P, Ramachandran S, et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment[J]. Oncogene202039(16):3292-3304.
[20]
Ishihara S, Hata K, Hirose K, et al. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer[J]. Sci Rep202212(1):6261.
[21]
San-Millan I, Julian CG, Matarazzo C, et al. Is lactate an oncometabolite? Evidence supporting a role for lactate in the regulation of transcriptional activity of cancer-related genes in MCF7 breast cancer cells[J]. Front Oncol20199:1536.
[22]
Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol202122(1):85.
[23]
Chen L, Huang L, Gu Y, et al. Lactate-lactylation hands between metabolic reprogramming and immunosuppression[J]. Int J Mol Sci202223(19):11943.
[24]
Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell202282(9):1660-1677.
[25]
Tian LR, Lin MZ, Zhong HH, et al. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy[J]. Biomater Sci202210(14):3892-3900.
[26]
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and warburg phenomenon[J]. Pharmacol Ther2020206:107451.
[27]
Chen Y, Wu J, Zhai L, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation[J]. Cell2024187(2):294-311.
[28]
Deng J, Liao X. Lysine lactylation (Kla) might be a novel therapeutic target for breast cancer[J]. BMC Med Genomics202316(1):283.
[29]
Liu X, Liu H, Zeng L, et al. BRCA1 overexpression attenuates breast cancer cell growth and migration by regulating the pyruvate kinase M2-mediated Warburg effect via the PI3K/AKT signaling pathway[J]. PeerJ202210:e14052.
[30]
Jiang Y, Zhang M, Yu D, et al. CircRBM33 downregulation inhibits hypoxia-induced glycolysis and promotes apoptosis of breast cancer cells via a microRNA-542-3p/HIF-1α axis[J]. Cell Death Discovery20228(1):126.
[31]
Wang W, He X, Wang Y, et al. LINC01605 promotes aerobic glycolysis through lactate dehydrogenase a in triple-negative breast cancer[J]. Cancer Sci2022113(8):2484-2495.
[32]
Zu Y, Chen XF, Li Q, et al. PGC-1alpha activates SIRT3 to modulate cell proliferation and glycolytic metabolism in breast cancer[J]. Neoplasma202168(2):352-361.
[33]
Zhou Y, Niu W, Luo Y, et al. p53/Lactate dehydrogenase a axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53[J]. Cancer Sci2019110(3):939-949.
[34]
Jin J, Qiu S, Wang P, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1alpha-dependent metabolic reprogramming[J]. J Exp Clin Cancer Res201938(1):377.
[35]
Pandkar MR, Sinha S, Samaiya A, et al. Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression[J]. Transl Oncol202337:101758.
[36]
Zhao Y, Zhong R, Deng C, et al. Circle RNA circABCB10 modulates PFN2 to promote breast cancer progression, as well as aggravate radioresistance through facilitating glycolytic metabolism via miR-223-3p[J]. Cancer Biother Radiopharm202136(6):477-490.
[37]
Jin L, Guo Y, Chen J, et al. Lactate receptor HCAR1 regulates cell growth, metastasis and maintenance of cancer-specific energy metabolism in breast cancer cells[J]. Mol Med Rep202226(2):268.
[38]
Zong S, Dai W, Fang W, et al. SIK2 promotes cisplatin resistance induced by aerobic glycolysis in breast cancer cells through PI3K/AKT/mTOR signaling pathway[J]. Biosci Rep2020:R20201302.
[39]
Li F, Zhang H, Huang Y, et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer[J]. Drug Resist Updat202473:101059.
[40]
Li W, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer[J]. Autophagy202420(1):114-130.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 林丽, 杨英, 张毅. 精准医学时代乳腺癌腋窝淋巴结的管理[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 193-198.
[3] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[4] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[5] 余晓青, 高欣, 罗文培, 杨露. BI-RADS 4类结节患者的乳腺癌风险预测模型[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 217-223.
[6] 杨焕, 马靓, 沈俊, 董丽丽, 孙文雯. 乳腺癌新辅助化疗患者支持性照顾需求与症状群及应对方式的相关性[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 224-230.
[7] 刘炎东, 李恒宇. 新辅助化疗后乳腺癌局部区域的分期评估和治疗的降阶梯策略[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 146-151.
[8] 伍梦妮, 徐志华, 陈彦. DTNBP1基因在三阴性乳腺癌中的作用及其预后价值[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 158-168.
[9] 管枫, 罗斌, 柯晓康, 袁静萍. 少见部位转移性乳腺浸润性小叶癌临床病理特征分析[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 169-174.
[10] 刘世佳, 陶新楠, 史晋宇, 吕文豪, 张亚芬. 乳酸脱氢酶A在乳腺癌中的作用[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 175-179.
[11] 伍先权, 张立果, 周璇, 梁建深. 乳腺包裹性乳头状癌的临床病理与手术策略联系[J]. 中华普通外科学文献(电子版), 2024, 18(04): 294-297.
[12] 李雪, 韩萌萌, 冯雪园, 马宁. 人表皮生长因子受体2低表达乳腺癌的研究进展及挑战[J]. 中华普通外科学文献(电子版), 2024, 18(04): 308-312.
[13] 刘虹, 王品, 王彬, 任杰超, 张文杰, 吴剑, 刘莹. 经腋窝腔镜辅助保留乳头乳晕皮下腺体切除术+Ⅰ期胸肌前假体乳房重建术[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 419-422.
[14] 康乐平, 张琳, 万舟, 苟勇. 腔镜皮下腺体切除及腋窝淋巴结清扫加假体植入术治疗乳腺癌疗效及并发症分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 427-429.
[15] 韩苏驰, 黄琰菁. 乳酸脱氢酶与小细胞肺癌脑转移风险临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 402-406.
阅读次数
全文


摘要