切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 158 -168. doi: 10.3877/cma.j.issn.1674-0807.2024.03.005

论著

DTNBP1基因在三阴性乳腺癌中的作用及其预后价值
伍梦妮1, 徐志华1, 陈彦1,()   
  1. 1. 215006 苏州大学附属第一医院普外科
  • 收稿日期:2023-11-16 出版日期:2024-06-01
  • 通信作者: 陈彦
  • 基金资助:
    江苏省自然科学基金资助项目(BK20211076); 江苏省研究生科研与实践创新计划项目(SJCX22_1507)

Role of DTNBP1 in triple negative breast cancer and its prognostic value

Mengni Wu1, Zhihua Xu1, Yan Chen1,()   

  1. 1. Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
  • Received:2023-11-16 Published:2024-06-01
  • Corresponding author: Yan Chen
引用本文:

伍梦妮, 徐志华, 陈彦. DTNBP1基因在三阴性乳腺癌中的作用及其预后价值[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 158-168.

Mengni Wu, Zhihua Xu, Yan Chen. Role of DTNBP1 in triple negative breast cancer and its prognostic value[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(03): 158-168.

目的

探讨DTNBP1基因在三阴性乳腺癌(TNBC)中的作用及预后价值。

方法

收集TCGA数据库建库至今TNBC患者的RNA测序表达结果,共获得621个TNBC患者样本和32个正常样本。选取了与正常样本差异表达较大的前497个TNBC患者样本进行分析;通过生物信息学方法筛选差异表达基因;Kaplan-Meier生存分析探讨DTNBP1基因表达对497例TNBC患者预后的影响;采用主成分分析、GO及KEGG富集分析,探索DTNBP1基因的功能;用Cox单因素及多因素回归分析,寻找TNBC的预后因素,构建预后模型;采用实时定量PCR(qRT-PCR)检测DTNBP1在人正常乳腺上皮细胞(MCF-10A),激素受体阳性乳腺癌细胞(MCF-7)及TNBC(HCC1937、MDA-MB-231、MDA-MB-361、MDA-MB-468)细胞系中的表达情况;选取MDA-MB-231和MDA-MB-468细胞系进行转染实验,构建DTNBP1低表达TNBC细胞;克隆形成实验和流式细胞术分别检测DTNBP1低表达细胞和对照组细胞的增殖能力和细胞周期。

结果

与正常乳腺组织相比,TNBC有3 196个差异表达基因,其中2 056个基因上调,1140个基因下调。以TNBC患者DTNBP1基因mRNA的中位表达量8.12为临界值,将497例TNBC患者分为DTNBP1高表达组(248例)和低表达组(249例),生存分析结果提示2组患者的中位DFS分别为9.8年和18.2年,组间比较差异有统计学意义( t=3.824,P<0.001);主成分分析结果显示,DTNBP1高、低表达2组患者共发现1 138个差异表达基因,其中表达上调的基因有647个,表达下调的基因有491个。GO功能富集分析发现DTNBP1基因可能参与的生物过程有白细胞迁移、细胞外基质形成和细胞外骨架形成等;可能参与的细胞组分有含胶原的细胞外基质、细胞-基质结和焦点粘连等;可能参与的分子功能有细胞外基质结构组成、抗原结合和细胞黏附分子结合等。KEGG通路富集分析显示,DTNBP1可能参与的细胞通路有细胞周期、PI3K-Akt、MAPK、Hippo和TNF信号通路。Cox单因素分析发现年龄(HR=1.099,95%CI:1.080~1.135,P=0.004),临床分期(HR=2.885,95%CI:1.743~4.284,P<0.001),T分期(HR=12.576,95%CI:6.514~26.583,P<0.001),远处转移(HR=1.676,95%CI:1.477~2.201,P=0.034),N分期(HR=1.922,95%CI:1.567~2.756,P=0.006)及DTNBP1基因表达(HR=2.934,95%CI:1.904~4.513,P<0.001)与TNBC患者的预后相关。Cox多因素分析结果显示年龄(HR=1.168,95%CI:1.126~1.214,P<0.001),T分期(HR=3.771,95%CI:2.731~6.682,P=0.002)及DTNBP1基因表达(HR=1.563,95%CI:1.315~1.961,P<0.001)是TNBC患者的独立预后因素。采用年龄、T分期DTNBP1基因表达构建TNBC患者的临床预后模型,其校准曲线较接近于理想曲线。MCF-10A、MCF-7、HCC1937、MDA-MB-231、MDA-MB-361、MDA-MB-468中DTNBP1基因的mRNA表达量分别为1.00±0.28、1.71±0.41、3.25±0.42、6.81±0.55、2.43±0.21、5.57±0.26,组间比较差异有统计学意义(F=7.250,P=0.032)。与MCF-10A细胞相比,DTNBP1在MDA-MB-231(t=-0.947,P<0.001)和MDA-MB-468细胞中表达增加(t=-0.978,P=0.021);MDA-MB-231细胞分别转染sh-NC和sh-DTNBP1质粒后DTNBP1基因的mRNA表达量分别为1.00±0.05和0.33±0.04,组间比较差异有统计学意义( t=0.078,P=0.031);MDA-MB-468细胞分别转染sh-NC和sh-DTNBP1质粒后DTNBP1基因的mRNA表达量分别为1.00±0.10和0.18±0.07,组间比较差异有统计学意义( t=0.080,P<0.001);MDA-MB-231细胞转染sh-NC和sh-DTNBP1质粒后的细胞克隆数分别为100.00±10.00和24.00±7.00,组间比较差异有统计学意义( t=158.771,P<0.001);MDA-MB-468细胞转染sh-NC和sh-DTNBP1质粒后的细胞克隆数分别为100.00±7.00和17.00±4.00,组间比较差异有统计学意义( t=169.778,P<0.001);流式细胞周期实验结果显示,转染sh-NC质粒的MDA-MB-231细胞在G0/G1期、S期及G2/M期的细胞数分别为31.94±4.50、25.23±1.20和42.83±1.80,转染sh-DTNBP1质粒的MDA-MB-231细胞在G0/G1期、S期及G2/M期细胞数分别为52.39±3.10、20.11±1.90和27.25±2.40,2组细胞周期分布比较差异有统计学意义( t=-74.063,P=0.026);转染sh-NC质粒的MDA-MB-468细胞在G0/G1期、S期及G2/M期的细胞数分别为43.15±2.50、31.26±2.90和25.59±3.60,转染sh-DTNBP1质粒的MDA-MB-468细胞在G0/G1期、S期及G2/M期的细胞数分别为64.70±3.00、23.24±3.10和12.06±2.30,2组细胞周期分布比较差异有统计学意义( t=-64.992,P=0.037)。

结论

DTNBP1可能作为TNBC的潜在治疗靶点,其表达水平与TNBC患者的预后密切相关。

Objective

To investigate the role and prognostic value of the DTNBP1 gene in triple negative breast cancer (TNBC).

Methods

RNA sequencing expression profiles of TNBC patients were collected in the TCGA database from the establishment, yielding 621 TNBC patient samples and 32 normal samples. For accuracy, the top 497 TNBC patient samples with the most significant differential expression compared with normal samples were selected for analysis. Differentially expressed genes were screened using bioinformatics methods. The impact of DTNBP1 gene expression on the prognosis of 497 TNBC patients was assessed through Kaplan-Meier survival analysis. Principal component analysis (PCA), GO, and KEGG enrichment analyses were employed to explore the function of the DTNBP1 gene. Cox univariate and multivariate regression analyses were conducted to identify prognostic factors for TNBC and construct a prognostic model. Real-time quantitative PCR (qRT-PCR) was used to detect DTNBP1 expression in normal human mammary epithelial cells (MCF-10A), hormone receptor-positive breast cancer cells (MCF-7), and TNBC cells (HCC1937, MDA-MB-231, MDA-MB-361, MDA-MB-468). Transfection experiments were performed on MDA-MB-231 and MDA-MB-468 cells to construct DTNBP1 low-expression TNBC cells. Clonogenic assays and flow cytometry were used to assess the proliferation and cell cycle of DTNBP1 low-expression cells and control cells.

Results

Compared with normal breast tissue, TNBC tissue sample exhibited 3 196 differentially expressed genes, with 2 056 upregulated and 1 140 downregulated. Using a median DTNBP1 mRNA expression level of 8.12 as a threshold, 497 TNBC patients were divided into high expression (248 cases) and low expression (249 cases) groups. Survival analysis indicated median DFS of 9.8 years for the high expression group and 18.2 years for the low expression group, with a statistically significant difference (t=3.824, P<0.001). PCA identified 1 138 differentially expressed genes between high and low DTNBP1 expression groups, with 647 upregulated and 491 downregulated. GO enrichment analysis suggested that DTNBP1 may be involved in different biological processes (such as leukocyte migration, extracellular matrix formation, and extracellular matrix organization), cellular components (including collagen-containing extracellular matrix, cell-matrix junctions, and focal adhesions), and molecular functions (such as extracellular matrix structural constituent, antigen binding, and cell adhesion molecule binding). KEGG pathway enrichment analysis indicated potential involvement of DTNBP1 in cell cycle, PI3K-Akt signaling pathway, MAPK signaling pathway, Hippo signaling pathway and TNF signaling pathway. Cox univariate analysis identified age (HR=1.099, 95%CI: 1.080-1.135, P=0.004), clinical stage (HR=2.885, 95%CI: 1.743-4.284, P<0.001), tumor stage (HR=12.576, 95%CI: 6.514-26.583, P<0.001), distant metastasis (HR=1.676, 95%CI: 1.477-2.201, P=0.034), node stage (HR=1.922, 95%CI: 1.567-2.756, P=0.006), and DTNBP1 gene expression (HR=2.934, 95%CI: 1.904-4.513, P<0.001) as factors related to TNBC prognosis. Multivariate analysis indicated that age (HR=1.168, 95%CI: 1.126-1.214, P<0.001), tumor stage (HR=3.771, 95%CI: 2.731-6.682, P=0.002), and DTNBP1 gene expression (HR=1.563, 95%CI: 1.315-1.961, P<0.001) were independent prognostic factors for TNBC. A clinical prognostic model for TNBC patients was constructed using age, tumor stage, and DTNBP1 gene expression, with its calibration curve closely matching the ideal curve. The mRNA expression levels of the DTNBP1 gene in normal human mammary epithelial cells (MCF-10A), hormone receptor-positive breast cancer cell lines (MCF-7), and TNBC cell lines (HCC1937, MDA-MB-231, MDA-MB-361, MDA-MB-468) were 1.00±0.28, 1.71±0.41, 3.25±0.42, 6.81±0.55, 2.43±0.21 and 5.57±0.26, respectively, with significant differences between groups (F=7.250, P=0.032). Compared with MCF-10A cells, DTNBP1 expression increased in MDA-MB-231 (t=-0.947, P<0.001) and MDA-MB-468 cells (t=-0.978, P=0.021). After transfection with sh-NC and sh-DTNBP1 plasmids, the mRNA expression levels of DTNBP1 in MDA-MB-231 cells were 1.00±0.05 and 0.33±0.04, respectively, with significant differences between groups (t=0.078, P=0.031). For MDA-MB-468 cells, the mRNA expression levels were 1.00±0.10 and 0.18±0.07, respectively, with significant differences between groups (t=0.080, P<0.001). The number of cell colonies in MDA-MB-231 cells transfected with sh-NC and sh-DTNBP1 plasmids were 100.00±10.00 and 24.00±7.00, respectively, with significant differences between groups (t=158.771, P<0.001). For MDA-MB-468 cells, the number of colonies were 100.00±7.00 and 17.00±4.00, respectively, with significant differences between groups (t=169.778, P<0.001). Flow cytometry cell cycle analysis showed that the numbers of MDA-MB-231 cells in G0/G1, S, and G2/M phases transfected with sh-NC plasmid were 31.94±4.50, 25.23±1.20, and 42.83±1.80, respectively. For cells transfected with sh-DTNBP1 plasmid, the numbers of MDA-MB-231 cells were 52.39±3.10, 20.11±1.90, and 27.25±2.40, respectively, with significant differences between groups (t=-74.063, P=0.026). For MDA-MB-468 cells transfected with sh-NC plasmid, the numbers of cells in G0/G1, S, and G2/M phases were 43.15±2.50, 31.26±2.90, 25.59±3.60, respectively. For cells transfected with sh-DTNBP1 plasmid, the numbers of cells were 64.70±3.00, 23.24±3.10, and 12.06±2.30, respectively, with significant differences between groups (t=-64.992, P=0.037).

Conclusion

DTNBP1 may serve as a potential therapeutic target for TNBC, with its expression level closely related to the prognosis of TNBC patients.

表1 多因素Cox比例风险模型变量赋值表
图1 癌症基因组图谱数据库中三阴性乳腺癌与正常对照组之间差异表达的基因筛选 a、b图分别为三阴性乳腺癌与正常乳腺之间差异表达基因的热图和火山图注:a图中的每一行代表一个基因,每一列代表一个样本。颜色表示基因表达的相对水平,红色表示上调基因,蓝色表示下调基因,右上角的数值表示基因表达量,数值越高代表表达量越高;b图中每个点代表一个基因,红色点表示显著上调的基因,蓝色点表示显著下调的基因,黑色点表示无显著差异的基因,logFC为基因表达的对数倍数变化,表示某个基因在三阴性乳腺癌组和正常对照组之间表达水平的变化倍数。正值表示该基因在三阴性乳腺癌中上调,负值表示下调;-log10(fdr)为假发现率的负对数10变换值,其值越大,表示差异表达基因的显著性越高
图2 DTNBP1高、低表达三阴性乳腺癌患者的无瘤生存曲线比较注:2组比较:t=3.824,P<0.001;DTNBP1为肌营养不良蛋白结合蛋白-1
图3 DTNBP1基因功能分析 a图为主成分分析图,DTNBP1高、低表达组之间重复性低;b图为DTNBP1高、低表达组患者差异表达基因的热图;c图为DTNBP1高、低表达组患者差异表达基因的KEGG通路富集分析;d图为DTNBP1高、低表达组患者差异表达基因之间的相关性分析注:a图中PC1为主成分1,PC2为主成分2,PC3为主成分3;b图中横坐标为样本编号,纵坐标为各个差异基因,图中红色代表基因上调表达,且红色程度越深代表基因表达越高,蓝色代表基因表达下调,蓝色程度越深代表基因表达越低,右上角的数值表示基因表达量,数值越高代表表达量越高;c图中红色代表基因表达上调,蓝色代表下调;d图中红色代表正相关,绿色代表负相关,数值代表相关程度;DTNBP1为肌营养不良蛋白结合蛋白-1
图4 三阴性乳腺癌预后预测模型的列线图注:DTNBP1为肌营养不良蛋白结合蛋白-1
图5 三阴性乳腺癌患者预后预测模型的校准曲线a、b、c图分别为1年、3年、5年的肿瘤特异性生存校准曲线
图6 DTNBP1基因敲低后MDA-MB-231和MDA-MB-468细胞克隆形成实验结果注:a、b图分别为MDA-MB-231细胞转染sh-NC(空白质粒)和sh-DTNBP1质粒后的细胞克隆;c、d图分别为MDA-MB-468细胞转染sh-NC(空白质粒)和sh-DTNBP1质粒后的细胞克隆;DTNBP1为肌营养不良蛋白结合蛋白-1
图7 DTNBP1基因敲低后MDA-MB-231和MDA-MB-468细胞流式细胞周期检测结果注:a、b图分别为MDA-MB-231细胞转染sh-NC(空白质粒)和sh-DTNBP1质粒后的细胞周期检测结果;c、d图分别为MDA-MB-468细胞转染sh-NC(空白质粒)和sh-DTNBP1质粒后的细胞周期检测结果;DTNBP1为肌营养不良蛋白结合蛋白-1
[1]
Loibl S, Poortmans P, Morrow M, et al. Breast cancer[J]. Lancet, 2021, 397(10286): 1750-1769.
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics[J]. CA Cancer J Clin, 2020, 70: 7-30.
[3]
Cesca MG, Vian L, Cristóvão-Ferreira S, et al. HER2-positive advanced breast cancer treatment in 2020[J]. Cancer Treat Rev, 2020, 88: 102033.
[4]
Escrivá-de-Romaní S, Arumí M, Bellet M, et al. HER2-positive breast cancer: Current and new therapeutic strategies[J]. Breast, 2018, 39: 80-88.
[5]
Zajdel A, Nycz J, Wilczok A. Lapatinib enhances paclitaxel toxicity in MCF-7, T47D, and MDA-MB-321 breast cancer cells[J]. Toxicol In Vitro, 2021, 75: 105200.
[6]
Ito H, Morishita R, Nagata K. Schizophrenia susceptibility gene product dysbindin-1 regulates the homeostasis of cyclin D1[J]. Biochim Biophys Acta, 2016, 1862(8): 1383-1391.
[7]
Chang EH, Fernando K, Yeung LWE, et al. Single point mutation on the gene encoding dysbindin results in recognition deficits[J]. Genes Brain Behav, 2018, 17(5): e12449.
[8]
Chen Y, Bang S, McMullen MF, et al. Neuronal activity-induced sterol regulatory element binding protein-1 (SREBP1) is disrupted in dysbindin-null mice-potential link to cognitive impairment in schizophrenia[J]. Mol Neurobiol, 2017, 54(3): 1699-1709.
[9]
Yuan Q, Yang F, Xiao Y, et al. Regulation of brain-derived neurotrophic factor exocytosis and gamma-aminobutyric acidergic interneuron synapse by the schizophrenia susceptibility gene dysbindin-1[J]. Biol Psychiatry, 2016, 80(4): 312-322.
[10]
Hu H, Wang X, Li C, et al. Loss of dysbindin implicates synaptic vesicle replenishment dysregulation as a potential pathogenic mechanism in schizophrenia[J]. Neuroscience, 2021, 452: 138-152.
[11]
Abdolmaleky HM, Pajouhanfar S, Faghankhani M, et al. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and psychotic bipolar disorder[J]. Am J Med Genet B Neuropsychiatr Genet, 2015, 168(8): 687-696.
[12]
Guo X, Lv X, Fang C, et al. Dysbindin as a novel biomarker for pancreatic ductal adenocarcinoma identified by proteomic profiling[J]. Int J Cancer, 2016, 139(8): 1821-1829.
[13]
Correa DD, Satagopan J, Cheung K, et al. COMT, BDNF, and DTNBP1 polymorphisms and cognitive functions in patients with brain tumors[J]. Neuro Oncol, 2016, 18(10): 1425-1433.
[14]
DeSantis CE, Ma J, Goding Sauer A, et al. Breast cancer statistics, 2017, racial disparity in mortality by state[J]. CA Cancer J Clin, 2017, 67(6): 439-448.
[15]
Pop L, Suciu ID, Ionescu O, et al. The dual blockade in the neoadjuvant setting of HER-2 positive early-stage breast cancer[J]. J Med Life, 2019, 12(4): 329-331.
[16]
Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer[J]. Science, 1989, 244(4905): 707-712.
[17]
Choong GM, Cullen GD, O′Sullivan CC. Evolving standards of care and new challenges in the management of HER2-positive breast cancer[J]. CA Cancer J Clin, 2020, 70(5): 355-374.
[18]
Nagaraj G, Ma CX. Clinical challenges in the management of hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer: a literature review[J]. Adv Ther, 2021, 38(1): 109-136.
[19]
Bray NJ, Preece A, Williams NM, et al.Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression[J].Hum Mol Genet, 200514(14):1947-195.
[20]
Talbot KEidem WL, Tinsley CL, et al.Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia[J]. J Clin Invest2004113(9):1353-1363.
[21]
Fanous AH, van den Oord EJ, Riley BP, et al. Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia[J]. Am J Psychiatry2005162(10):1824-1832.
[22]
Ji Y, Yang F, Papaleo F, et al. Role of dysbindin in dopamine receptor trafficking and cortical GABA function[J]. Proc Natl Acad Sci U S A, 2009106(46):19593-19598.
[23]
Cheah SY, Lawford BR, Young RM, et al. Dysbindin (DTNBP1) variants are associated with hallucinations in schizophrenia[J]. Eur Psychiatry201530(4):486-491.
[24]
Cheng X, Li D, Qi T, et al. Objective to identify and verify the regulatory mechanism of DTNBP1 as a prognostic marker for hepatocellular carcinoma[J]. Sci Rep, 2022, 12(1): 211.
[25]
Zhu D, Zheng S, Fang C, et al. Dysbindin promotes pancreatic ductal adenocarcinoma metastasis by activating NF-κB/MDM2 via miR-342-3p[J]. Cancer Lett, 2020, 477: 107-121.
[26]
Chicco D, Jurman G.A brief survey of tools for genomic regions enrichment analysis[J]. Front Bioinform, 20222:968327.
[27]
Jamasbi EHamelian M, Hossain MA, et al.The cell cycle,cancer development and therapy[J]. Mol Biol Rep, 202249(11):10875-10883.
[28]
Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate[J]. Int J Ayurveda Res2010, 1(4):274-278.
[29]
Higo MUzawa K, Kouzu Y, et al. Identification of candidate radioresistant genes in human squamous cell carcinoma cells through gene expression analysis using DNA microarrays[J]. Oncol Rep, 200514(5):1293-1298.
[30]
Manning BD, Cantley LC.AKT/PKB signaling: navigating downstream[J]. Cell, 2007129(7):1261-1274.
[31]
Mehra S, Deshpande N, Nagathihalli N. Targeting PI3K pathway in pancreaticductal adenocarcinoma: rationale and progress[J]. Cancers (Basel)202113(17):4434.
[32]
Higo M, Uzawa KKouzu Y, et al.Identification of candidate radioresistant genes in human squamous cell carcinoma cells through gene expression analysis using DNA microarrays[J]. Oncol Rep200514(5):1293-1298.
[33]
Guo X, Lv X, Fang C, et al. Dysbindin as a novel biomarker for pancreatic ductal adenocarcinoma identified by proteomic profiling[J]. Int J Cancer, 2016139(8):1821-1829.
[34]
Knudsen ES, Vail P, Balaji U, et al. Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunologic markers[J]. Clin Cancer Res, 201723(15):4429-4440.
[35]
Xie T, Nguyen T, Hupe M, et al. Multidrug resistance decreases with mutations of melanosomal regulatory genes[J]. Cancer Res200969(3):992-999.
[36]
Cheng X, Li D, Qi T, et al. Objective to identify and verify the regulatory mechanism of DTNBP1 as a prognostic marker for hepatocellular carcinoma[J]. Sci Rep202212(1):211.
[37]
Correa DD, Satagopan J, Cheung K, et al. COMT, BDNF, and DTNBP1 polymorphisms and cognitive functions in patients with brain tumors[J]. Neuro Oncol201618(10):1425-33.
[1] 国际机器人乳腺外科手术专家协作组(专家委员会). 机器人乳腺癌手术专家共识[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 129-139.
[2] 刘炎东, 李恒宇. 新辅助化疗后乳腺癌局部区域的分期评估和治疗的降阶梯策略[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 146-151.
[3] 孙姚承, 汤建军, 张伟元, 刘传磊. 阳性淋巴结比和阳性淋巴结对数比对结直肠癌患者预后价值的研究[J]. 中华普通外科学文献(电子版), 2024, 18(03): 204-208.
[4] 蔡大明, 陆晓峰, 王行舟, 王萌, 刘颂, 夏雪峰, 沈晓菲, 杜峻峰, 管文贤. 三级淋巴结构在胃神经内分泌瘤中的预后价值及预后预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 401-405.
[5] 达热拜·热达提, 刘林, 赵为民, 孟涛, 雷程, 金博, 毕建军, 李新宇, 王海江. 中低位直肠癌新辅助放化疗后侧方淋巴结清扫术的临床观察[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 415-418.
[6] 刘虹, 王品, 王彬, 任杰超, 张文杰, 吴剑, 刘莹. 经腋窝腔镜辅助保留乳头乳晕皮下腺体切除术+Ⅰ期胸肌前假体乳房重建术[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 419-422.
[7] 康乐平, 张琳, 万舟, 苟勇. 腔镜皮下腺体切除及腋窝淋巴结清扫加假体植入术治疗乳腺癌疗效及并发症分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 427-429.
[8] 李娇娇, 张军, 徐顺. 全程新辅助治疗联合全直肠系膜切除术对局部进展期直肠癌预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 283-286.
[9] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[10] 聂彬, 赵铁军, 于云宝, 李欢, 谢林峻. 单孔加一孔腹腔镜手术与传统腹腔镜手术治疗乙状结肠癌的疗效与分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 330-333.
[11] 张茴, 李一, 代美玲. 植入物在乳房重建中的应用进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 349-352.
[12] 颜晓敏, 崔嵘嵘. 23例乳腺佩吉特病的经验交流[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 353-354.
[13] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[14] 曾谣, 谢琴, 陈显育, 王平根, 毛玲秋, 何丹玲, 杜飞, 郑希彦, 何函樨. CDC42EP2基因与肝癌预后、免疫细胞浸润关系及其对细胞迁移侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 363-369.
[15] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
阅读次数
全文


摘要