[67] |
Houvenaeghel G, Bannier M, Rua S, et al. Robotic breast and reconstructive surgery: 100 procedures in 2-years for 80 patients[J]. Surg Oncol, 2019, 31: 38-45.
|
[68] |
Chung JH, You HJ, Kim HS, et al. A novel technique for robot assisted latissimus dorsi flap harvest[J]. J Plast Reconstr Aesthet Surg, 2015,68(7): 966-972.
|
[69] |
Houvenaeghel G, El Hajj H, Schmitt A, et al. Robotic-assisted skin sparing mastectomy and immediate reconstruction using latissimus dorsi flap a new effective and safe technique: a comparative study[J]. Surg Oncol, 2020,35: 406-411.
|
[70] |
Vourtsis SA, Paspala A, Lykoudis PM, et al. Robotic-assisted harvest of latissimus dorsi muscle flap for breast reconstruction: review of the literature[J]. J Robot Surg, 2022,16(1): 15-19.
|
[71] |
Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction[J]. Semin Plast Surg, 2014,28(1): 20-25.
|
[72] |
Mazzaferro D, Song P, Massand S, et al. The omental free flap-a review of usage and physiology[J]. J Reconstr Microsurg, 2018, 34(3): 151-169.
|
[73] |
Collins D, Hogan AM, O'Shea D, et al. The omentum: anatomical, metabolic, and surgical aspects[J].J Gastrointest Surg, 2009,13(6): 1138-1146.
|
[74] |
Claro F, Sarian LOZ, Pinto-Neto AM. Omentum for mammary disorders: a 30-year systematic review[J]. Ann Surg Oncol, 2015,22(8): 2540-2550.
|
[75] |
Özkan Ö,Özkan Ö,Çinpolat A, et al. Robotic harvesting of the omental flap: a case report and mini-review of the use of robots in reconstructive surgery[J]. J Robot Surg, 2019,13(4): 539-543.
|
[76] |
Day SJ, Dy B, Nguyen MD. Robotic omental flap harvest for near-total anterior chest wall coverage: a potential application of robotic techniques in plastic and reconstructive surgery[J]. BMJ Case Rep, 2021, 14(2):e237887.
|
[77] |
桂余,陈莉. 达芬奇机器人在乳腺外科中的应用及进展[J]. 临床外科杂志,2021, 29(3): 292-294.
|
[78] |
Liu FC, Thawanyarat K, Navarro Y, et al. Current research on the use of the omental flap in breast reconstruction and post-mastectomy lymphedema: a focus on omental-vascularized lymph node transfer[J]. Life(Basel), 2023, 13(6):1380.
|
[79] |
徐舒曼,陈莉. 乳腺癌相关淋巴水肿的治疗进展[J/CD]. 中华乳腺病杂志(电子版), 2017, 11(4): 247-251.
|
[80] |
Fabrizio T, Guarro G, Filippini A, et al. Indications for limitations of the omental pedicle flap in immediate breast reconstruction-surgical results evaluation and Breast-QⒸ2.0 survey[J]. J Plast Reconstr Aesthet Surg, 2022,75(4): 1352-1359.
|
[81] |
Frey JD, Yu JW, Cohen SM, et al. Robotically assisted omentum flap harvest: a novel, minimally invasive approach for vascularized lymph node transfer[J]. Plast Reconstr Surg Glob Open, 2020,8(4): e2505.
|
[82] |
陈显春,阎文婷,吴秀娟,等. 达芬奇机器人辅助下乳腺癌带蒂大网膜乳房填充重建术[J]. 局解手术学杂志,2017,26(11): 823-826.
|
[83] |
Nguyen DH, Rochlin DH, Deptula PL, et al. A novel fat-augmented omentum-based construct for unilateral and bilateral free-flap breast reconstruction in underweight and normal weight women receiving nipple or skin-sparing mastectomies[J]. Ann Surg Oncol, 2023,30(5): 3048-3057.
|
[84] |
Munhoz AM, Gemperli R, Filassi JR. Oncoplastic surgery with omental flap reconstruction: a study of 200 cases[J]. Breast Cancer Res Treat, 2017, 163(2): 407-409.
|
[85] |
Li NL, Zheng Z, Li JP, et al. Immediate breast reconstruction with omental flap for luminal breast cancer patients: ten clinical case reports[J]. Medicine, 2017,96(33):e7797.
|
[86] |
van Alphen TC, Fechner MR, Smit JM, et al. The laparoscopically harvested omentum as a free flap for autologous breast reconstruction[J]. Microsurgery, 2017,37(6): 539-545.
|
[87] |
Kim EK, Chae SM, Ahn SH. Single-port laparoscopically harvested omental flap for immediate breast reconstruction[J]. Breast Cancer Res Treat, 2020, 184(2): 375-384.
|
[88] |
Selber JC. The robotic DIEP flap[J]. Plast Reconstr Surg, 2020,145(2): 340-343.
|
[89] |
Bishop SN, Asaad M, Liu J, et al. Robotic harvest of the deep inferior epigastric perforator flap for breast reconstruction: a case series[J].Plast Reconstr Surg, 2022,149(5): 1073-1077.
|
[90] |
Choi JH, Song SY, Park HS, et al. Robotic DIEP flap harvest through a totally extraperitoneal approach using a single-port surgical robotic system[J]. Plast Reconstr Surg, 2021, 148(2): 304-307.
|
[91] |
Kurlander DE, Le-Petross HT, Shuck JW, et al. Robotic DIEP patient selection: analysis of CT angiography [J]. Plast Reconstr Surg Glob Open, 2021, 9(12): e3970.
|
[92] |
Tanna N, Sugiyama G, Smith ML, et al. The full continuum of robotic breast surgery: robotic-assisted mastectomy, robotic DIEP flap, and robotic supermicrosurgery[J]. Plast Reconstr Surg Glob Open, 2023, 11(12): e5491.
|
[93] |
Hohenstein AA, Kraus D, Zeller J, et al. Robotic-assisted DIEP flap harvest for autologous breast reconstruction: case report, technical aspects and identification of suitable patients[J]. Handchir Mikrochir Plast Chir, 2024,56(2):147-155.
|
[94] |
Roy N, Alessandro CJ, Ibelli TJ, et al. The expanding utility of robotic-assisted flap harvest in autologous breast reconstruction: a systematic review[J]. J Clin Med, 2023, 12(15):4951.
|
[95] |
Butler DP, Plonczak AM, Reissis D, et al. Factors that predict deep inferior epigastric perforator flap donor site hernia and bulge[J]. J Plast Surg Hand Surg, 2018,52(6): 338-342.
|
[96] |
Qingqing H, Jian Z, Dayong Z, et al. Robot-assisted internal mammary lymph node chain dissection for breast cancer[J]. Clin Breast Cancer, 2018,18(4):e441-e445.
|
[97] |
Du J, Mo H, Fan L, et al. Robot-assisted internal mammary lymph chain excision for breast cancer: a case report[J]. Medicine (Baltimore), 2017, 96(35): e7894.
|
[98] |
Schwartz GS, Antoun D, Klein P, et al. Internal mammary silicone lymphadenopathy diagnosed by robotic thoracoscopic lymphadenectomy[J]. J Robot Surg, 2013,7(2): 209-211.
|
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3): 209-249.
|
[2] |
Huang J, Chan PS, Lok V, et al. Global incidence and mortality of breast cancer: a trend analysis[J]. Aging (Albany NY), 2021, 13(4): 5748-5803.
|
[3] |
Sadier A, Viriot L, Pantalacci S, et al. The ectodysplasin pathway: from diseases to adaptations[J]. Trends Genet, 2014, 30(1): 24-31.
|
[4] |
Yang RH, Mei YL, Jiang YH, et al. Ectodysplasin A (EDA) signaling: from skin appendage to multiple diseases[J]. Int J Mol Sci, 2022, 23(16):8911.
|
[5] |
Abubakar M, Klein A, Fan SQ, et al. Host, reproductive, and lifestyle factors in relation to quantitative histologic metrics of the normal breast[J]. Breast Cancer Res, 2023, 25(1):97.
|
[6] |
Dai HJ, Yan Y, Wang PS, et al. Distribution of mammographic density and its influential factors among Chinese women[J]. Int J Epidemiol, 2014, 43(4): 1240-1251.
|
[7] |
Maskarinec G, Pagano I, Chen Z, et al. Ethnic and geographic differences in mammographic density and their association with breast cancer incidence[J]. Breast Cancer Res Treat, 2007,104(1): 47-56.
|
[8] |
Yap YS, Lu YS, Tamura K, et al. Insights into breast cancer in the east vs the west: a review[J]. JAMA Oncol, 2019, 5(10): 1489-1496.
|
[9] |
Maskarinec G, Pagano I, Lurie G, et al. A longitudinal investigation of mammographic density: the multiethnic cohort[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(4): 732-739.
|
[10] |
Suga H, Shiraishi T, Takushima A. Scar assessment after breast reconstruction risk factors for hypertrophy and hyperpigmentation in asian patients[J]. Ann Plast Surg, 2020,85(3): 229-232.
|
[11] |
Gill HS, O-Wern L, Tiwari P, et al. Postoperative scar management protocol for asian patients[J]. Aesthetic Plast Surg, 2023,48(3):461-471.
|
[12] |
Liao JW, Gui Y, Li ZL, et al. Artificial intelligence-assisted ultrasound image analysis to discriminate early breast cancer in Chinese population: a retrospective, multicentre, cohort study[J].EClinicalMedicine, 2023,60:102001.
|
[13] |
陈莉. 达芬奇机器人在乳房重建中的应用及未来发展新趋势[J/CD]. 中华乳腺病杂志(电子版), 2020, 14(3):131-133.
|
[14] |
Gui Y, Chen QQ, Li SC, et al. Safety and feasibility of minimally invasive (laparoscopic/robotic-assisted) nipple-sparing mastectomy combined with prosthesis breast reconstruction in breast cancer: a single-center retrospective study[J]. Ann Surg Oncol, 2022,29(7): 4057-4065.
|
[15] |
Toesca A, Park HS, Ryu JM, et al. Robot-assisted mastectomy: next major advance in breast cancer surgery[J]. Br J Surg, 2023, 110(4): 502-503.
|
[16] |
Egan KG and Selber JC. Modern innovations in breast surgery: robotic breast surgery and robotic breast reconstruction[J]. Clin Plast Surg, 2023. 50(2): 357-366.
|
[99] |
Pardolesi A, Bertolaccini L, Brandolini J, et al. Robotic internal mammary lymphadenectomy: another possible minimally invasive approach to sampling lymph nodes in breast cancer patients[J]. J Vis Surg, 2018,4: 71.
|
[100] |
Melly L, Jansens JL, Kalscheuer G, et al. Robotic lymphadenectomy of an internal mammary lymph node metastasis[J]. Acta Chir Belg, 2018,118(5): 320-321.
|
[101] |
Yim NH, Burns HR, Davis MJ, et al. Robotic plastic surgery education: developing a robotic surgery training program specific to plastic surgery trainees[J]. Semin Plast Surg, 2023,37(3): 157-167.
|
[102] |
Loh ZJ, Wu TY, Cheng FT. Evaluation of the learning curve in robotic nipple-sparing mastectomy for breast cancer[J]. Clin Breast Cancer, 2021, 21(3): e279-e284.
|
[103] |
Lai HW, Wang CC, Lai YC, et al. The learning curve of robotic nipple sparing mastectomy for breast cancer: an analysis of consecutive 39 procedures with cumulative sum plot[J]. Eur J Surg Oncol, 2019, 45(2): 125-133.
|
[104] |
Houvenaeghel G, Bannier M, Rua S, et al. Breast cancer robotic nipple sparing mastectomy: evaluation of several surgical procedures and learning curve[J]. World J Surg Oncol, 2019,17(1): 27.
|
[17] |
Selber JC, Baumann DP, and Holsinger FC. Robotic latissimus dorsi muscle harvest: a case series[J]. Plast Reconstr Surg, 2012, 129(6): 1305-1312.
|
[18] |
Lai HW, Toesca A, Sarfati B, et al. Consensus statement on robotic mastectomy-expert panel from international endoscopic and robotic breast surgery symposium (IERBS) 2019[J]. Ann Surg, 2020, 271(6): 1005-1012.
|
[19] |
Toesca A, Sangalli C, Maisonneuve P, et al. A randomized trial of robotic mastectomy versus open surgery in women with breast cancer or BrCA mutation[J]. Ann Surg, 2022, 276(1): 11-19.
|
[20] |
Fujii T, Nakazawa Y, Ogino M, et al. Oncological safety of immediate breast reconstruction with skin- or nipple-sparing mastectomy: the value of tumor-to-dermis distance measured by preoperative ultrasonography[J]. World J Surg Oncol, 2021,19(1):72.
|
[21] |
吴鑫,刘静,陈莉.机器人手术系统在乳腺外科的应用进展[J].机器人外科学杂志(中英文),2023,4(3):186-192.
|
[22] |
Filipe MD, de Bock E, Postma EL, et al. Robotic nipple-sparing mastectomy complication rate compared to traditional nipple-sparing mastectomy: a systematic review and meta-analysis[J]. J Robot Surg, 2022,16(2): 265-272.
|
[23] |
Nessa A, Shaikh S, Fuller M, et al. Postoperative complications and surgical outcomes of robotic versus conventional nipple-sparing mastectomy in breast cancer: meta-analysis[J]. Br J Surg, 2024,111(1):znad336.
|
[24] |
Toesca A, Peradze N, Manconi A, et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: feasibility and safety study[J]. Breast, 2017,31: 51-56.
|
[25] |
Ryu JM, Lee J, Lee JY, et al. Mastectomy with reconstruction including robotic endoscopic surgery (MARRES): a prospective cohort study of the Korea Robot-Endoscopy Minimal Access Breast Surgery Study group (KoREa-BSG) and Korean Breast Cancer Study Group (KBCSG)[J]. BMC Cancer, 2023,23(1):571.
|
[26] |
Moon J, Lee J, Lee DW, et al. Postoperative pain assessment of robotic nipple-sparing mastectomy with immediate prepectoral prosthesis breast reconstruction: a comparison with conventional nipple-sparing mastectomy[J]. Int J Med Sci, 2021, 18(11): 2409-2416.
|
[27] |
Lai HW, Chen DR, Liu LC, et al. Robotic versus conventional or endoscopic-assisted nipple-sparing mastectomy and immediate prosthesis breast reconstruction in the management of breast cancer: a prospectively designed multicenter trial comparing clinical outcomes, medical cost, and patient-reported outcomes (RCENSM-P)[J]. Ann Surg, 2024,279(1): 138-146.
|
[28] |
Farr DE, Haddock NT, Tellez J, et al. Safety and feasibility of single-port robotic-assisted nipple-sparing mastectomy[J]. JAMA Surg, 2024,159(3):269-276.
|
[29] |
Park KU, Lee S, Sarna A, et al. Prospective pilot study protocol evaluating the safety and feasibility of robot-assisted nipple-sparing mastectomy (RNSM)[J]. BMJ Open, 2021,11(11): e050173.
|
[30] |
Sanson C, Roulot A, Honart JF, et al. Robotic prophylactic nipple-sparing mastectomy with immediate prosthetic breast reconstruction: a prospective study of 138 procedures[J]. Chirurgia (Bucur), 2021,116(2): 135-142.
|
[31] |
Maes-Carballo M, García-García M, Rodríguez-Janeiro I, et al. A systematic review of robotic breast surgery versus open surgery[J]. J Robot Surg, 2023,17(6): 2583-2596.
|
[32] |
Toesca A, Peradze N, Galimberti V, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique[J]. Ann Surg, 2017,266(2): E28-E30.
|
[33] |
Park HS, Lee J, Lee H, et al. Development of robotic mastectomy using a single-port surgical robot system[J]. J Breast Cancer, 2020, 23(1): 107-112.
|
[34] |
Lee H, Lee J, Lee K, et al. Comparison between gasless and gas-inflated robot-assisted nipple-sparing mastectomy[J]. J Breast Cancer, 2021,24(2): 183-195.
|
[35] |
Park HS, Lee J, Lee DW, et al. Robot-assisted nipple-sparing mastectomy with immediate breast reconstruction: an initial experience[J]. Sci Rep, 2019, 9(1):15669.
|
[36] |
Pasca A, Bonci EA, Chiuzan C, et al. Treatment and prevention of periprosthetic capsular contracture in breast surgery with prosthesis using leukotriene receptor antagonists: a meta-analysis[J]. Aesthet Surg J, 2022,42(5): 483-494.
|
[37] |
Federica G, Tommaso F, Alessia C, et al. Use of antimicrobial irrigation and incidence of capsular contracture in breast augmentation and immediate implant-based breast reconstruction[J]. Aesthetic Plast Surg, 2023,47(6):2345-2350.
|
[38] |
King BW, McCarter JH, Burns HR, et al. Robotics in implant-based and autologous breast reconstruction[J]. Semin Plast Surg, 2023,37(3):168-175.
|
[39] |
Sigalove S, Maxwell GP, Sigalove NM, et al. Prepectoral implant-based breast reconstruction: rationale, indications, and preliminary results[J]. Plast Reconstr Surg, 2017,139(2): 287-294.
|
[40] |
Cogliandro A, Salzillo R, De Bernardis R, et al. Prepectoral versus subpectoral direct-to-implant breast reconstruction: evaluation of patient′s quality of life and satisfaction with BREAST-Q[J]. Aesthetic Plast Surg, 2023,47(4): 1291-1299.
|
[41] |
Cook LJ, Kovacs T. Novel devices for implant-based breast reconstruction: is the use of meshes to support the lower pole justified in terms of benefits? A review of the evidence [J]. Ecancermedicalscience, 2018,12: 796.
|
[42] |
Eyuboglu AA, Akdemir O, Aydogan F, et al. Implant-based breast reconstruction with bovine pericardium: our approach using Tutopatch® and review of literature[J]. Aesthetic Plast Surg, 2023,48(3):285-296.
|
[43] |
Qiu CS, Seth AK. Early clinical outcomes of polydioxanone mesh for prepectoral prosthetic breast reconstruction[J]. Plast Reconstr Surg Glob Open, 2022,10(1): e4082.
|
[44] |
Levy AS, Bernstein JL, Xia JJ, et al. Poly-4-hydroxybutyric acid mesh compares favorably with acellular dermal matrix in tissue expander-based breast reconstruction[J]. Ann Plast Surg, 2020,85(Suppl 1): S2-S7.
|
[45] |
Gao P, Wang XY, Bai P, et al. Clinical outcomes and patient satisfaction with the use of biological and synthetic meshes in one-stage implant-based breast reconstruction[J]. Breast Cancer, 2022, 29(3): 450-457.
|
[46] |
Choi YS, You HJ, Lee TY, et al. Comparing complications of biologic and synthetic mesh in breast reconstruction: a systematic review and network meta-analysis[J]. Arch Plast Surg, 2023, 50(1): 3-9.
|
[47] |
Lo Torto F, Marcasciano M, Kaciulyte J, et al. Prepectoral breast reconstruction with TiLoop® Bra Pocket: a single center prospective study[J]. Eur Rev Med Pharmacol Sci, 2020,24(3): 991-999.
|
[48] |
Cattelani L, Polotto S, Arcuri MF, et al. One-step prepectoral breast reconstruction with dermal matrix-covered implant compared to submuscular implantation: functional and cost evaluation[J]. Clin Breast Cancer, 2018,18(4): e703-e711.
|
[49] |
Parcells A, Spiro S. Exploration of robotic direct to implant breast reconstruction[J]. Plast Reconstr Surg Glob Open, 2020,8(1): e2619.
|
[50] |
Dieterich M, Paepke S, Zwiefel K, et al. Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases[J]. Plast Reconstr Surg, 2013,132(1): 8e-19e.
|
[51] |
Sisti A, Sadeghi P, Cuomo R, et al. Pre-pectoral one-stage breast reconstruction with anterior coverage using superior anterior biological acellular dermal matrix (ADM) and inferior anterior dermal sling support[J]. Medicina (Kaunas), 2022,58(8):992.
|
[52] |
Dieterich M, Angres J, Stubert J, et al. Patient-reported outcomes in implant-based breast reconstruction alone or in combination with a titanium-coated polypropylene mesh a detailed analysis of the BREAST-Q and overview of the literature[J]. Geburtshilfe Frauenheilkd, 2015,75(7): 692-701.
|
[53] |
Yao XL, Guo YY, Tu Y, et al. Simple prosthesis versus prosthesis plus titanium-coated polypropylene mesh for implant-based immediate breast reconstruction after total mastectomy for breast cancer[J]. Gland Surg, 2019,8(6): 773-783.
|
[54] |
Angarita FA, Castelo M, Englesakis M, et al. Robot-assisted nipple-sparing mastectomy: systematic review[J]. Br J Surg, 2020,107(12): 1580-1594.
|
[55] |
Lalani T. Breast implant infections: an update[J]. Infect Dis Clin North Am, 2018,32(4):877-884.
|
[56] |
de Almeida Rizzi SKL, Haddad CAS, Giron PS, et al. Early free range-of-motion upper limb exercises after mastectomy and immediate implant-based reconstruction are safe and beneficial: a randomized trial[J]. Ann Surg Oncol, 2020,27(12): 4750-4759.
|
[57] |
Wan AD, Liang Y, Chen L, et al. Association of long-term oncologic prognosis with minimal access breast surgery vs conventional breast surgery[J]. JAMA Surg, 2022, 157(12):e224711.
|
[58] |
Park HS, Lee J, Lai HW, et al. Surgical and oncologic outcomes of robotic and conventional nipple-sparing mastectomy with immediate reconstruction: international multicenter pooled data analysis[J].Ann Surg Oncol, 2022,29(11): 6646-6657.
|
[59] |
Xu SM, Tang P, Chen XC, et al. Novel technique for laparoscopic harvesting of latissimus dorsi flap with prosthesis implantation for breast reconstruction. A preliminary study with 2 case reports[J]. Medicine, 2016, 95(46):e5428.
|
[60] |
姜军,梁燕,艾翔,等.我国乳腺腔镜手术现状与困境[J].中国实用外科杂志,2020,40(10): 1130-1134.
|
[61] |
Eo PS, Kim H, Lee JS, et al. Robot-assisted latissimus dorsi flap harvest for partial breast reconstruction: comparison with endoscopic and conventional approaches[J]. Aesthet Surg J, 2023,44(1): 38-46.
|
[62] |
Winocour S, Tarassoli S, Chu CK, et al. Comparing outcomes of robotically assisted latissimus dorsi harvest to the traditional open approach in breast reconstruction[J]. Plast Reconstr Surg, 2020,146(6): 1221-1225.
|
[63] |
Cheon JH, Kim HE, Park SH, et al. Ten-year experience of robotic latissimus muscle flap reconstructive surgery at a single institution[J]. J Plast Reconstr Aesthet Surg, 2022,75(10): 3664-3672.
|
[64] |
Houvenaeghel G, Bannier M, Rua S, et al. Skin sparing mastectomy and robotic latissimus dorsi-flap reconstruction through a single incision[J]. World J Surg Oncol, 2019, 17(1):176.
|
[65] |
陈莉. 机器人和腔镜背阔肌乳房重建关键技术[J]. 中国实用外科杂志,2020,40(10): 1149-1152.
|
[66] |
Lai HW, Chen ST, Lin SL, et al. Technique for single axillary incision robotic assisted quadrantectomy and immediate partial breast reconstruction with robotic latissimus dorsi flap harvest for breast cancer:a case report [J]. Medicine, 2018,97(27):e11373.
|