切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 129 -139. doi: 10.3877/cma.j.issn.1674-0807.2024.03.001

指南与共识

机器人乳腺癌手术专家共识
国际机器人乳腺外科手术专家协作组(专家委员会)   
  1. 1. 400038 重庆,陆军军医大学第一附属医院乳腺甲状腺外科
  • 收稿日期:2024-05-10 出版日期:2024-06-01

Expert consensus for robotic breast cancer surgery

International Collaborative Group of Robotic Breast Surgery (Expert Committee)   

  1. 1. Department of Breast and Thyroid Surgery, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
    2. Department of Breast and Thyroid Surgery, First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
  • Received:2024-05-10 Published:2024-06-01
引用本文:

国际机器人乳腺外科手术专家协作组(专家委员会). 机器人乳腺癌手术专家共识[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 129-139.

International Collaborative Group of Robotic Breast Surgery (Expert Committee). Expert consensus for robotic breast cancer surgery[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(03): 129-139.

乳腺微创手术具有创伤小、出血少、切口隐蔽、并发症少、功能保护好等优点。机器人手术系统以其智能化、远程化、微创化、数字化在乳腺外科手术中比传统开放或腔镜手术更有优势,诞生了很多新术式,让更多乳腺癌患者获益。与欧美女性相比,亚裔女性乳腺癌年轻化趋势明显,乳房多为中小体积,腺体密度较高,与周围脂肪之间层次分明,更合适远程手术;且亚裔女性术后更易形成瘢痕。因此,机器人辅助乳腺微创技术对于亚裔患者意义重大。鉴于目前手术尚缺乏规范及统一意见,结合国际机器人乳腺癌治疗的最新理论和实践经验,对机器人辅助的保留乳头乳晕的乳房切除术联合假体乳房重建或自体组织乳房重建等手术技术制定了专家共识。

Minimally invasive breast surgery has the advantages of reduced trauma and blood loss, aesthetic incision placement, decreased incidence of postoperative complications, and optimal functional conservation. Robotic surgical systems, with their intelligent, remote, minimally invasive, and digital capabilities, are superior to traditional open or laparoscopic techniques for breast surgical operations. Their use has led to the development of many new surgical techniques that have benefited a great number of patients with breast cancer. Compared with that of Western women, the epidemiological profile of breast cancer in Asian women is characterized by an earlier age of onset, predominantly smaller breasts with denser glandular tissue, a distinct anatomical delineation between glandular and adipose tissues, and a greater predisposition to scar formation. Thus, Asian patients are prime candidates for remote breast cancer surgery. Given the current lack of standardization, consensus, and guidelines for robot-assisted nipple-sparing mastectomy with implant or autologous tissue reconstruction, as well as other robotic-assisted procedures, we make this consensus and provide these resources here for Asian patients, with the incorporation of the latest theories and international practical experiences.

图1 三孔法机器人辅助的保留乳头乳晕的乳房切除术 a图所示3个切口内分别置入相应的戳卡;b图所示对接机械臂
图2 双孔法机器人辅助的保留乳头乳晕的乳房切除术 a图所示于腋窝切口内置入单孔port,于2个操作孔分别放入2个戳卡,第二孔内置入额外的戳卡;b图所示随后对接机械臂
图3 单孔法机器人辅助的保留乳头乳晕的乳房切除术 a图所示腋窝切口内置入单孔port; b图所示单孔port套上无菌手套,剪开3个手套指尖部,分别放入3个戳卡,随后对接机械臂
图4 机器人辅助的保留乳头乳晕的乳房切除术示意图注:机械臂连接完毕后,插入相应操作器械,在非充气条件下完成手术
图5 使用钛网补片完全包裹乳房假体后行胸肌前假体植入乳房重建
图6 胸肌后假体植入乳房重建 a图所示将补片与胸大肌下缘进行缝合;b图所示由腋窝切口植入乳房假体,使用补片覆盖假体并固定
[67]
Houvenaeghel G, Bannier M, Rua S, et al. Robotic breast and reconstructive surgery: 100 procedures in 2-years for 80 patients[J]. Surg Oncol, 2019, 31: 38-45.
[68]
Chung JH, You HJ, Kim HS, et al. A novel technique for robot assisted latissimus dorsi flap harvest[J]. J Plast Reconstr Aesthet Surg, 201568(7): 966-972.
[69]
Houvenaeghel G, El Hajj H, Schmitt A, et al. Robotic-assisted skin sparing mastectomy and immediate reconstruction using latissimus dorsi flap a new effective and safe technique: a comparative study[J]. Surg Oncol, 202035: 406-411.
[70]
Vourtsis SA, Paspala A, Lykoudis PM, et al. Robotic-assisted harvest of latissimus dorsi muscle flap for breast reconstruction: review of the literature[J]. J Robot Surg, 202216(1): 15-19.
[71]
Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction[J]. Semin Plast Surg, 201428(1): 20-25.
[72]
Mazzaferro D, Song P, Massand S, et al. The omental free flap-a review of usage and physiology[J]. J Reconstr Microsurg, 2018, 34(3): 151-169.
[73]
Collins D, Hogan AM, O'Shea D, et al. The omentum: anatomical, metabolic, and surgical aspects[J].J Gastrointest Surg, 200913(6): 1138-1146.
[74]
Claro F, Sarian LOZ, Pinto-Neto AM. Omentum for mammary disorders: a 30-year systematic review[J]. Ann Surg Oncol, 201522(8): 2540-2550.
[75]
Özkan ÖÖzkan ÖÇinpolat A, et al. Robotic harvesting of the omental flap: a case report and mini-review of the use of robots in reconstructive surgery[J]. J Robot Surg, 201913(4): 539-543.
[76]
Day SJ, Dy B, Nguyen MD. Robotic omental flap harvest for near-total anterior chest wall coverage: a potential application of robotic techniques in plastic and reconstructive surgery[J]. BMJ Case Rep, 2021, 14(2):e237887.
[77]
桂余,陈莉. 达芬奇机器人在乳腺外科中的应用及进展[J]. 临床外科杂志2021, 29(3): 292-294.
[78]
Liu FC, Thawanyarat K, Navarro Y, et al. Current research on the use of the omental flap in breast reconstruction and post-mastectomy lymphedema: a focus on omental-vascularized lymph node transfer[J]. Life(Basel), 2023, 13(6):1380.
[79]
徐舒曼,陈莉. 乳腺癌相关淋巴水肿的治疗进展[J/CD]. 中华乳腺病杂志(电子版), 2017, 11(4): 247-251.
[80]
Fabrizio T, Guarro G, Filippini A, et al. Indications for limitations of the omental pedicle flap in immediate breast reconstruction-surgical results evaluation and Breast-QⒸ2.0 survey[J]. J Plast Reconstr Aesthet Surg, 202275(4): 1352-1359.
[81]
Frey JD, Yu JW, Cohen SM, et al. Robotically assisted omentum flap harvest: a novel, minimally invasive approach for vascularized lymph node transfer[J]. Plast Reconstr Surg Glob Open, 20208(4): e2505.
[82]
陈显春,阎文婷,吴秀娟,等. 达芬奇机器人辅助下乳腺癌带蒂大网膜乳房填充重建术[J]. 局解手术学杂志201726(11): 823-826.
[83]
Nguyen DH, Rochlin DH, Deptula PL, et al. A novel fat-augmented omentum-based construct for unilateral and bilateral free-flap breast reconstruction in underweight and normal weight women receiving nipple or skin-sparing mastectomies[J]. Ann Surg Oncol, 202330(5): 3048-3057.
[84]
Munhoz AM, Gemperli R, Filassi JR. Oncoplastic surgery with omental flap reconstruction: a study of 200 cases[J]. Breast Cancer Res Treat, 2017, 163(2): 407-409.
[85]
Li NL, Zheng Z, Li JP, et al. Immediate breast reconstruction with omental flap for luminal breast cancer patients: ten clinical case reports[J]. Medicine, 201796(33):e7797.
[86]
van Alphen TC, Fechner MR, Smit JM, et al. The laparoscopically harvested omentum as a free flap for autologous breast reconstruction[J]. Microsurgery, 201737(6): 539-545.
[87]
Kim EK, Chae SM, Ahn SH. Single-port laparoscopically harvested omental flap for immediate breast reconstruction[J]. Breast Cancer Res Treat, 2020, 184(2): 375-384.
[88]
Selber JC. The robotic DIEP flap[J]. Plast Reconstr Surg, 2020145(2): 340-343.
[89]
Bishop SN, Asaad M, Liu J, et al. Robotic harvest of the deep inferior epigastric perforator flap for breast reconstruction: a case series[J].Plast Reconstr Surg, 2022149(5): 1073-1077.
[90]
Choi JH, Song SY, Park HS, et al. Robotic DIEP flap harvest through a totally extraperitoneal approach using a single-port surgical robotic system[J]. Plast Reconstr Surg, 2021, 148(2): 304-307.
[91]
Kurlander DE, Le-Petross HT, Shuck JW, et al. Robotic DIEP patient selection: analysis of CT angiography [J]. Plast Reconstr Surg Glob Open, 2021, 9(12): e3970.
[92]
Tanna N, Sugiyama G, Smith ML, et al. The full continuum of robotic breast surgery: robotic-assisted mastectomy, robotic DIEP flap, and robotic supermicrosurgery[J]. Plast Reconstr Surg Glob Open, 2023, 11(12): e5491.
[93]
Hohenstein AA, Kraus D, Zeller J, et al. Robotic-assisted DIEP flap harvest for autologous breast reconstruction: case report, technical aspects and identification of suitable patients[J]. Handchir Mikrochir Plast Chir, 202456(2):147-155.
[94]
Roy N, Alessandro CJ, Ibelli TJ, et al. The expanding utility of robotic-assisted flap harvest in autologous breast reconstruction: a systematic review[J]. J Clin Med, 2023, 12(15):4951.
[95]
Butler DP, Plonczak AM, Reissis D, et al. Factors that predict deep inferior epigastric perforator flap donor site hernia and bulge[J]. J Plast Surg Hand Surg, 201852(6): 338-342.
[96]
Qingqing H, Jian Z, Dayong Z, et al. Robot-assisted internal mammary lymph node chain dissection for breast cancer[J]. Clin Breast Cancer, 201818(4):e441-e445.
[97]
Du J, Mo H, Fan L, et al. Robot-assisted internal mammary lymph chain excision for breast cancer: a case report[J]. Medicine (Baltimore), 2017, 96(35): e7894.
[98]
Schwartz GS, Antoun D, Klein P, et al. Internal mammary silicone lymphadenopathy diagnosed by robotic thoracoscopic lymphadenectomy[J]. J Robot Surg, 20137(2): 209-211.
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 202171(3): 209-249.
[2]
Huang J, Chan PS, Lok V, et al. Global incidence and mortality of breast cancer: a trend analysis[J]. Aging (Albany NY), 2021, 13(4): 5748-5803.
[3]
Sadier A, Viriot L, Pantalacci S, et al. The ectodysplasin pathway: from diseases to adaptations[J]. Trends Genet, 2014, 30(1): 24-31.
[4]
Yang RH, Mei YL, Jiang YH, et al. Ectodysplasin A (EDA) signaling: from skin appendage to multiple diseases[J]. Int J Mol Sci, 2022, 23(16):8911.
[5]
Abubakar M, Klein A, Fan SQ, et al. Host, reproductive, and lifestyle factors in relation to quantitative histologic metrics of the normal breast[J]. Breast Cancer Res, 2023, 25(1):97.
[6]
Dai HJ, Yan Y, Wang PS, et al. Distribution of mammographic density and its influential factors among Chinese women[J]. Int J Epidemiol, 2014, 43(4): 1240-1251.
[7]
Maskarinec G, Pagano I, Chen Z, et al. Ethnic and geographic differences in mammographic density and their association with breast cancer incidence[J]. Breast Cancer Res Treat, 2007104(1): 47-56.
[8]
Yap YS, Lu YS, Tamura K, et al. Insights into breast cancer in the east vs the west: a review[J]. JAMA Oncol, 2019, 5(10): 1489-1496.
[9]
Maskarinec G, Pagano I, Lurie G, et al. A longitudinal investigation of mammographic density: the multiethnic cohort[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(4): 732-739.
[10]
Suga H, Shiraishi T, Takushima A. Scar assessment after breast reconstruction risk factors for hypertrophy and hyperpigmentation in asian patients[J]. Ann Plast Surg, 202085(3): 229-232.
[11]
Gill HS, O-Wern L, Tiwari P, et al. Postoperative scar management protocol for asian patients[J]. Aesthetic Plast Surg, 202348(3):461-471.
[12]
Liao JW, Gui Y, Li ZL, et al. Artificial intelligence-assisted ultrasound image analysis to discriminate early breast cancer in Chinese population: a retrospective, multicentre, cohort study[J].EClinicalMedicine, 202360:102001.
[13]
陈莉. 达芬奇机器人在乳房重建中的应用及未来发展新趋势[J/CD]. 中华乳腺病杂志(电子版), 2020, 14(3):131-133.
[14]
Gui Y, Chen QQ, Li SC, et al. Safety and feasibility of minimally invasive (laparoscopic/robotic-assisted) nipple-sparing mastectomy combined with prosthesis breast reconstruction in breast cancer: a single-center retrospective study[J]. Ann Surg Oncol, 202229(7): 4057-4065.
[15]
Toesca A, Park HS, Ryu JM, et al. Robot-assisted mastectomy: next major advance in breast cancer surgery[J]. Br J Surg, 2023, 110(4): 502-503.
[16]
Egan KG and Selber JC. Modern innovations in breast surgery: robotic breast surgery and robotic breast reconstruction[J]. Clin Plast Surg, 2023. 50(2): 357-366.
[99]
Pardolesi A, Bertolaccini L, Brandolini J, et al. Robotic internal mammary lymphadenectomy: another possible minimally invasive approach to sampling lymph nodes in breast cancer patients[J]. J Vis Surg, 20184: 71.
[100]
Melly L, Jansens JL, Kalscheuer G, et al. Robotic lymphadenectomy of an internal mammary lymph node metastasis[J]. Acta Chir Belg, 2018118(5): 320-321.
[101]
Yim NH, Burns HR, Davis MJ, et al. Robotic plastic surgery education: developing a robotic surgery training program specific to plastic surgery trainees[J]. Semin Plast Surg, 202337(3): 157-167.
[102]
Loh ZJ, Wu TY, Cheng FT. Evaluation of the learning curve in robotic nipple-sparing mastectomy for breast cancer[J]. Clin Breast Cancer, 2021, 21(3): e279-e284.
[103]
Lai HW, Wang CC, Lai YC, et al. The learning curve of robotic nipple sparing mastectomy for breast cancer: an analysis of consecutive 39 procedures with cumulative sum plot[J]. Eur J Surg Oncol, 2019, 45(2): 125-133.
[104]
Houvenaeghel G, Bannier M, Rua S, et al. Breast cancer robotic nipple sparing mastectomy: evaluation of several surgical procedures and learning curve[J]. World J Surg Oncol, 201917(1): 27.
[17]
Selber JC, Baumann DP, and Holsinger FC. Robotic latissimus dorsi muscle harvest: a case series[J]. Plast Reconstr Surg, 2012, 129(6): 1305-1312.
[18]
Lai HW, Toesca A, Sarfati B, et al. Consensus statement on robotic mastectomy-expert panel from international endoscopic and robotic breast surgery symposium (IERBS) 2019[J]. Ann Surg, 2020, 271(6): 1005-1012.
[19]
Toesca A, Sangalli C, Maisonneuve P, et al. A randomized trial of robotic mastectomy versus open surgery in women with breast cancer or BrCA mutation[J]. Ann Surg, 2022, 276(1): 11-19.
[20]
Fujii T, Nakazawa Y, Ogino M, et al. Oncological safety of immediate breast reconstruction with skin- or nipple-sparing mastectomy: the value of tumor-to-dermis distance measured by preoperative ultrasonography[J]. World J Surg Oncol, 202119(1):72.
[21]
吴鑫,刘静,陈莉.机器人手术系统在乳腺外科的应用进展[J].机器人外科学杂志(中英文)20234(3):186-192.
[22]
Filipe MD, de Bock E, Postma EL, et al. Robotic nipple-sparing mastectomy complication rate compared to traditional nipple-sparing mastectomy: a systematic review and meta-analysis[J]. J Robot Surg, 202216(2): 265-272.
[23]
Nessa A, Shaikh S, Fuller M, et al. Postoperative complications and surgical outcomes of robotic versus conventional nipple-sparing mastectomy in breast cancer: meta-analysis[J]. Br J Surg, 2024111(1):znad336.
[24]
Toesca A, Peradze N, Manconi A, et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: feasibility and safety study[J]. Breast, 201731: 51-56.
[25]
Ryu JM, Lee J, Lee JY, et al. Mastectomy with reconstruction including robotic endoscopic surgery (MARRES): a prospective cohort study of the Korea Robot-Endoscopy Minimal Access Breast Surgery Study group (KoREa-BSG) and Korean Breast Cancer Study Group (KBCSG)[J]. BMC Cancer, 202323(1):571.
[26]
Moon J, Lee J, Lee DW, et al. Postoperative pain assessment of robotic nipple-sparing mastectomy with immediate prepectoral prosthesis breast reconstruction: a comparison with conventional nipple-sparing mastectomy[J]. Int J Med Sci, 2021, 18(11): 2409-2416.
[27]
Lai HW, Chen DR, Liu LC, et al. Robotic versus conventional or endoscopic-assisted nipple-sparing mastectomy and immediate prosthesis breast reconstruction in the management of breast cancer: a prospectively designed multicenter trial comparing clinical outcomes, medical cost, and patient-reported outcomes (RCENSM-P)[J]. Ann Surg, 2024279(1): 138-146.
[28]
Farr DE, Haddock NT, Tellez J, et al. Safety and feasibility of single-port robotic-assisted nipple-sparing mastectomy[J]. JAMA Surg, 2024159(3):269-276.
[29]
Park KU, Lee S, Sarna A, et al. Prospective pilot study protocol evaluating the safety and feasibility of robot-assisted nipple-sparing mastectomy (RNSM)[J]. BMJ Open, 202111(11): e050173.
[30]
Sanson C, Roulot A, Honart JF, et al. Robotic prophylactic nipple-sparing mastectomy with immediate prosthetic breast reconstruction: a prospective study of 138 procedures[J]. Chirurgia (Bucur), 2021116(2): 135-142.
[31]
Maes-Carballo M, García-García M, Rodríguez-Janeiro I, et al. A systematic review of robotic breast surgery versus open surgery[J]. J Robot Surg, 202317(6): 2583-2596.
[32]
Toesca A, Peradze N, Galimberti V, et al. Robotic nipple-sparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique[J]. Ann Surg, 2017266(2): E28-E30.
[33]
Park HS, Lee J, Lee H, et al. Development of robotic mastectomy using a single-port surgical robot system[J]. J Breast Cancer, 2020, 23(1): 107-112.
[34]
Lee H, Lee J, Lee K, et al. Comparison between gasless and gas-inflated robot-assisted nipple-sparing mastectomy[J]. J Breast Cancer, 202124(2): 183-195.
[35]
Park HS, Lee J, Lee DW, et al. Robot-assisted nipple-sparing mastectomy with immediate breast reconstruction: an initial experience[J]. Sci Rep, 2019, 9(1):15669.
[36]
Pasca A, Bonci EA, Chiuzan C, et al. Treatment and prevention of periprosthetic capsular contracture in breast surgery with prosthesis using leukotriene receptor antagonists: a meta-analysis[J]. Aesthet Surg J, 202242(5): 483-494.
[37]
Federica G, Tommaso F, Alessia C, et al. Use of antimicrobial irrigation and incidence of capsular contracture in breast augmentation and immediate implant-based breast reconstruction[J]. Aesthetic Plast Surg, 202347(6):2345-2350.
[38]
King BW, McCarter JH, Burns HR, et al. Robotics in implant-based and autologous breast reconstruction[J]. Semin Plast Surg, 202337(3):168-175.
[39]
Sigalove S, Maxwell GP, Sigalove NM, et al. Prepectoral implant-based breast reconstruction: rationale, indications, and preliminary results[J]. Plast Reconstr Surg, 2017139(2): 287-294.
[40]
Cogliandro A, Salzillo R, De Bernardis R, et al. Prepectoral versus subpectoral direct-to-implant breast reconstruction: evaluation of patient′s quality of life and satisfaction with BREAST-Q[J]. Aesthetic Plast Surg, 202347(4): 1291-1299.
[41]
Cook LJ, Kovacs T. Novel devices for implant-based breast reconstruction: is the use of meshes to support the lower pole justified in terms of benefits? A review of the evidence [J]. Ecancermedicalscience, 201812: 796.
[42]
Eyuboglu AA, Akdemir O, Aydogan F, et al. Implant-based breast reconstruction with bovine pericardium: our approach using Tutopatch® and review of literature[J]. Aesthetic Plast Surg, 202348(3):285-296.
[43]
Qiu CS, Seth AK. Early clinical outcomes of polydioxanone mesh for prepectoral prosthetic breast reconstruction[J]. Plast Reconstr Surg Glob Open, 202210(1): e4082.
[44]
Levy AS, Bernstein JL, Xia JJ, et al. Poly-4-hydroxybutyric acid mesh compares favorably with acellular dermal matrix in tissue expander-based breast reconstruction[J]. Ann Plast Surg, 202085(Suppl 1): S2-S7.
[45]
Gao P, Wang XY, Bai P, et al. Clinical outcomes and patient satisfaction with the use of biological and synthetic meshes in one-stage implant-based breast reconstruction[J]. Breast Cancer, 2022, 29(3): 450-457.
[46]
Choi YS, You HJ, Lee TY, et al. Comparing complications of biologic and synthetic mesh in breast reconstruction: a systematic review and network meta-analysis[J]. Arch Plast Surg, 2023, 50(1): 3-9.
[47]
Lo Torto F, Marcasciano M, Kaciulyte J, et al. Prepectoral breast reconstruction with TiLoop® Bra Pocket: a single center prospective study[J]. Eur Rev Med Pharmacol Sci, 202024(3): 991-999.
[48]
Cattelani L, Polotto S, Arcuri MF, et al. One-step prepectoral breast reconstruction with dermal matrix-covered implant compared to submuscular implantation: functional and cost evaluation[J]. Clin Breast Cancer, 201818(4): e703-e711.
[49]
Parcells A, Spiro S. Exploration of robotic direct to implant breast reconstruction[J]. Plast Reconstr Surg Glob Open, 20208(1): e2619.
[50]
Dieterich M, Paepke S, Zwiefel K, et al. Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases[J]. Plast Reconstr Surg, 2013132(1): 8e-19e.
[51]
Sisti A, Sadeghi P, Cuomo R, et al. Pre-pectoral one-stage breast reconstruction with anterior coverage using superior anterior biological acellular dermal matrix (ADM) and inferior anterior dermal sling support[J]. Medicina (Kaunas), 202258(8):992.
[52]
Dieterich M, Angres J, Stubert J, et al. Patient-reported outcomes in implant-based breast reconstruction alone or in combination with a titanium-coated polypropylene mesh a detailed analysis of the BREAST-Q and overview of the literature[J]. Geburtshilfe Frauenheilkd, 201575(7): 692-701.
[53]
Yao XL, Guo YY, Tu Y, et al. Simple prosthesis versus prosthesis plus titanium-coated polypropylene mesh for implant-based immediate breast reconstruction after total mastectomy for breast cancer[J]. Gland Surg, 20198(6): 773-783.
[54]
Angarita FA, Castelo M, Englesakis M, et al. Robot-assisted nipple-sparing mastectomy: systematic review[J]. Br J Surg, 2020107(12): 1580-1594.
[55]
Lalani T. Breast implant infections: an update[J]. Infect Dis Clin North Am, 201832(4):877-884.
[56]
de Almeida Rizzi SKL, Haddad CAS, Giron PS, et al. Early free range-of-motion upper limb exercises after mastectomy and immediate implant-based reconstruction are safe and beneficial: a randomized trial[J]. Ann Surg Oncol, 202027(12): 4750-4759.
[57]
Wan AD, Liang Y, Chen L, et al. Association of long-term oncologic prognosis with minimal access breast surgery vs conventional breast surgery[J]. JAMA Surg, 2022, 157(12):e224711.
[58]
Park HS, Lee J, Lai HW, et al. Surgical and oncologic outcomes of robotic and conventional nipple-sparing mastectomy with immediate reconstruction: international multicenter pooled data analysis[J].Ann Surg Oncol, 202229(11): 6646-6657.
[59]
Xu SM, Tang P, Chen XC, et al. Novel technique for laparoscopic harvesting of latissimus dorsi flap with prosthesis implantation for breast reconstruction. A preliminary study with 2 case reports[J]. Medicine, 2016, 95(46):e5428.
[60]
姜军,梁燕,艾翔,等.我国乳腺腔镜手术现状与困境[J].中国实用外科杂志202040(10): 1130-1134.
[61]
Eo PS, Kim H, Lee JS, et al. Robot-assisted latissimus dorsi flap harvest for partial breast reconstruction: comparison with endoscopic and conventional approaches[J]. Aesthet Surg J, 202344(1): 38-46.
[62]
Winocour S, Tarassoli S, Chu CK, et al. Comparing outcomes of robotically assisted latissimus dorsi harvest to the traditional open approach in breast reconstruction[J]. Plast Reconstr Surg, 2020146(6): 1221-1225.
[63]
Cheon JH, Kim HE, Park SH, et al. Ten-year experience of robotic latissimus muscle flap reconstructive surgery at a single institution[J]. J Plast Reconstr Aesthet Surg, 202275(10): 3664-3672.
[64]
Houvenaeghel G, Bannier M, Rua S, et al. Skin sparing mastectomy and robotic latissimus dorsi-flap reconstruction through a single incision[J]. World J Surg Oncol, 2019, 17(1):176.
[65]
陈莉. 机器人和腔镜背阔肌乳房重建关键技术[J]. 中国实用外科杂志202040(10): 1149-1152.
[66]
Lai HW, Chen ST, Lin SL, et al. Technique for single axillary incision robotic assisted quadrantectomy and immediate partial breast reconstruction with robotic latissimus dorsi flap harvest for breast cancer:a case report [J]. Medicine, 201897(27):e11373.
[1] 袁芃. 2023年HER-2阳性乳腺癌治疗进展[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 66-70.
[2] 梁旭, 宋国红. 2023年激素受体阳性/HER-2阴性乳腺癌治疗的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 71-77.
[3] 陈文艳, 汪云, 魏松之. 晚期三阴性乳腺癌的精准治疗[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 78-84.
[4] 李朝阳, 任文琦, 侯令密, 蒋燕清, 刘沁豪, 赵永真, 张梅, 钱双强, 李金穗. T1-2N1miM0期乳腺癌患者乳房切除术后前哨淋巴结微转移的处理[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 85-92.
[5] 郭仁凯, 武慧铭, 李辉宇. 机器人辅助全系膜切除术治疗右半结肠癌有效性和安全性的Meta分析及试验序贯分析[J]. 中华普通外科学文献(电子版), 2024, 18(03): 234-240.
[6] 嵇晋, 吴胜文, 姜明瑞, 汪刘华, 王伟, 任俊, 王道荣, 马从超. 三种方式关闭盆底联合改良造口在直肠癌腹会阴联合切除术的对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 406-410.
[7] 刘虹, 王品, 王彬, 任杰超, 张文杰, 吴剑, 刘莹. 经腋窝腔镜辅助保留乳头乳晕皮下腺体切除术+Ⅰ期胸肌前假体乳房重建术[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 419-422.
[8] 康乐平, 张琳, 万舟, 苟勇. 腔镜皮下腺体切除及腋窝淋巴结清扫加假体植入术治疗乳腺癌疗效及并发症分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 427-429.
[9] 张茴, 李一, 代美玲. 植入物在乳房重建中的应用进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 349-352.
[10] 张可欣, 孙大为, 任常. 国产单孔蛇形臂腹腔镜机器人在妇科领域的应用探索[J]. 中华腔镜外科杂志(电子版), 2024, 17(02): 106-110.
[11] 王佳琦, 李兴源, 熊寰, 常泽文, 王子桐, 燕国庆, 丁可, 袁子茗, 乔天宇, 黄睿, 王贵玉, 汤庆超. 机器人手术系统辅助下的结直肠癌经自然腔道取标本手术与常规辅助切口取标本手术的近期疗效对比研究[J]. 中华结直肠疾病电子杂志, 2024, 13(02): 121-128.
[12] 中国医师协会骨科医师分会肩肘外科学组. 桡骨头骨折诊疗中国专家共识(2024版)[J]. 中华肩肘外科电子杂志, 2024, 12(02): 97-102.
[13] 中国医师协会神经外科医师分会神经电生理监测学组, 中国研究型医院学会临床神经电生理专业委员会. 颅内外血管搭桥术中神经电生理监测中国专家共识(2024版)[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 65-72.
[14] 娄彦文, 李涵, 李运鸿, 徐萌冉, 魏洋行, 随蓓蓓. 人参皂苷Rg3对人乳腺癌细胞的代谢活性及caspase 3、CDK2表达的影响[J]. 中华诊断学电子杂志, 2024, 12(02): 90-94.
[15] 李易飞, 李文冉, 刘欢. 乳酸脱氢酶A在乳腺癌诊疗中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(02): 128-132.
阅读次数
全文


摘要