切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 52 -56. doi: 10.3877/cma.j.issn.1674-0807.2024.01.008

综述

电穿孔消融技术治疗乳腺癌的研究进展
黄璐璐1, 叶萍2,(), 韩宝三3, 刘春苹1   
  1. 1. 200093 上海理工大学健康科学与工程学院;200093 上海市肿瘤能量治疗技术与器械协同创新中心
    2. 200093 上海理工大学健康科学与工程学院;200093 上海市肿瘤能量治疗技术与器械协同创新中心;200093 上海理工大学乳腺肿瘤智能诊断与治疗研究中心
    3. 200093 上海理工大学健康科学与工程学院;200093 上海理工大学乳腺肿瘤智能诊断与治疗研究中心;200092 上海交通大学医学院附属新华医院乳腺外科
  • 收稿日期:2022-12-05 出版日期:2024-02-01
  • 通信作者: 叶萍

Electroporation ablation technology for breast cancer treatment

Lulu Huang, Ping Ye(), Baosan Han   

  • Received:2022-12-05 Published:2024-02-01
  • Corresponding author: Ping Ye
引用本文:

黄璐璐, 叶萍, 韩宝三, 刘春苹. 电穿孔消融技术治疗乳腺癌的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(01): 52-56.

Lulu Huang, Ping Ye, Baosan Han. Electroporation ablation technology for breast cancer treatment[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(01): 52-56.

随着治疗理念的进步和技术的创新,乳腺癌治疗逐渐向微创化、精准化的方向发展。电穿孔是一种非热微创消融技术,通过电脉冲增加细胞膜通透性以非热方式导致细胞死亡,可以有效避免治疗区域重要结构的破坏。电脉冲不仅可以显著增强抗肿瘤机制的免疫效应,而且与化疗药物联合作用能够提高原发性及转移性乳腺癌的治疗效果。本文对脉冲电场消融的机制、免疫效应、电化学疗法的基础试验和临床研究等方面进展进行总结,为临床实践提供参考。

表1 临床前细胞实验的常见电化疗方案
表2 对转移性乳腺癌患者行ECT电穿孔的治疗效果
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
郑舒月,李伦,吴炅. 乳腺癌术后乳房重建手术的患者报告结局研究进展 [J/CD]. 中华乳腺病杂志(电子版), 202115(5): 311-314.
[3]
Fleming MM, Holbrook AI, Newell MS. Update on image-guided percutaneous ablation of breast cancer [J]. AJR Am J Roentgenol, 2017, 208(2): 267-274.
[4]
Geboers B, Scheffer HJ, Graybill PM, et al. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy [J]. Radiology, 2020, 295(2): 254-272.
[5]
Aguilar AA, Ho MC, Chang E, et al. Permeabilizing cell membranes with electric fields [J]. Cancers (Basel), 2021, 13(9): 2283.
[6]
Aslam MA, Riaz K, Mahmood MQ, et al. Hybrid analytical-numerical approach for investigation of differential effects in normal and cancer cells under electroporation [J]. Rsc Adv, 2019, 9(71): 41518-41530.
[7]
Probst U, Fuhrmann I, Beyer L, et al. Electrochemotherapy as a new modality in interventional oncology: a review [J]. Technol Cancer Res Treat, 2018, 17: 1533033818785329.
[8]
Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy [J]. Future Oncol, 2014, 10(5): 877-890.
[9]
Riaz K, Leung SF, Fan Z, et al. Low-cost energy-efficient 3-D nano-spikes-based electric cell lysis chips [J]. J Microelectromech S, 2017, 26(4): 910-920.
[10]
Neal RE, Singh R, Hatcher HC, et al. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode [J]. Breast Cancer Res Treat, 2010, 123(1): 295-301.
[11]
Chen Y, Moser MAJ, Luo Y, et al. Chemical enhancement of irreversible electroporation: a review and future suggestions [J]. Technol Cancer Res Treat, 2019, 18: 1533033819874128.
[12]
Poompavai S, Sree VG, Priyaa AK. Electrothermal analysis of the breast-tumor model during electroporation [J]. IEEE T Radiat Plasma, 2020, 4(4): 512-524.
[13]
Habrawi Z, Melkus MW, Khan S, et al. Cryoablation: a promising non-operative therapy for low-risk breast cancer [J]. Am J Surg, 2021, 221(1): 127-133.
[14]
Bulvik BE, Rozenblum N, Gourevich S, et al. Irreversible electroporation versus radiofrequency ablation: a comparison of local and systemic effects in a small-animal model [J]. Radiology, 2016, 280(2): 413-424.
[15]
Galluzzi L, Buqué A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease [J]. Nat Rev Immunol, 2017, 17(2): 97-111.
[16]
Goswami I, Coutermarsh-Ott S, Morrison RG, et al. Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells [J]. Bioelectrochemistry, 2017, 113: 42-50.
[17]
Guo S, Jing Y, Burcus NI, et al. Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases [J]. Int J Cancer, 2018, 142(3): 629-640.
[18]
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, et al. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity [J]. EBioMedicine, 2019, 44: 112-125.
[19]
Babikr F, Wan J, Xu A, et al. Distinct roles but cooperative effect of TLR3/9 agonists and PD-1 blockade in converting the immunotolerant microenvironment of irreversible electroporation-ablated tumors [J]. Cell Mol Immunol, 2021, 18(12): 2632-2647.
[20]
徐芸,张海燕,蒋春燕,等. 乳腺癌术后化疗患者支持性照顾需求、心理弹性及生活质量的相关性 [J/CD]. 中华乳腺病杂志(电子版), 2021, 15(6): 352-358.
[21]
Łapińska Z, Saczko J. Novel electroporation-based treatments for breast cancer [J]. Adv Clin Exp Med, 2022, 31(11): 1183-1186.
[22]
Rodrigues PG, Miranda-Silva D, Costa SM, et al. Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle [J]. Am J Physiol Heart Circ Physiol, 2019, 316(3): H459-H475.
[23]
Rembialkowska N, Dubinska-Magiera M, Sikora A, et al. Doxorubicin assisted by microsecond electroporation promotes irreparable morphological alternations in sensitive and resistant human breast adenocarcinoma cells [J]. Appl Sci Basel, 2020, 10(8): 2765.
[24]
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods-an overview [J]. Bioelectrochemistry, 2018, 120: 166-182.
[25]
Ruzgys P, Navickaitė D, Palepšienė R, et al. Induction of bystander and abscopal effects after electroporation-based treatments [J]. Cancers (Basel), 2022, 14(15): 3770.
[26]
管晓翔,谢晖. 三阴性乳腺癌含铂方案临床应用专家共识(2021版) [J]. 中华肿瘤防治杂志2021, 28(12): 885-890.
[27]
Mittal L, Aryal UK, Camarillo IG, et al. Quantitative proteomic analysis of enhanced cellular effects of electrochemotherapy with cisplatin in triple-negative breast cancer cells [J]. Sci Rep, 2019, 9(1): 13916.
[28]
Mittal L, Raman V, Camarillo IG, et al. Ultra-microsecond pulsed curcumin for effective treatment of triple negative breast cancers [J]. Biochem Biophys Res Commun, 2017, 491(4): 1015-1020.
[29]
Mittal L, Raman V, Camarillo IG, et al. Viability and cell cycle studies of metastatic triple negative breast cancer cells using low voltage electrical pulses and herbal curcumin [J]. Biomed Phys Eng Expr, 2019, 5(2): 025040.
[30]
Lu CH, Lin SH, Hsieh CH, et al. Enhanced anticancer effects of low-dose curcumin with non-invasive pulsed electric field on PANC-1 cells [J]. Onco Targets Ther, 2018, 11: 4723-4732.
[31]
Mittal L, Aryal UK, Camarillo IG, et al. Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: a global proteomics study [J]. Bioelectrochemistry, 2020, 131: 107350.
[32]
Romeo S, Sannino A, Scarfì MR, et al. ESOPE-equivalent pulsing protocols for calcium electroporation: an in vitro optimization study on 2 cancer cell models [J]. Technol Cancer Res Treat, 2018, 17: 1533033818788072.
[33]
Frandsen SK, Vissing M, Gehl J. A comprehensive review of calcium electroporation-a novel cancer treatment modality [J]. Cancers (Basel), 2020, 12(2): 290.
[34]
Gibot L, Montigny A, Baaziz H, et al. Calcium delivery by electroporation induces in vitro cell death through mitochondrial dysfunction without DNA damages [J]. Cancers (Basel), 2020, 12(2): 425.
[35]
Frandsen SK, Gissel H, Hojman P, et al. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis [J]. Cancer Res, 2012, 72(6): 1336-1341.
[36]
Kulbacka J, Rembiałkowska N, Szewczyk A, et al. The impact of extracellular Ca(2+) and nanosecond electric pulses on sensitive and drug-resistant human breast and colon cancer cells [J]. Cancers (Basel), 2021, 13(13): 3216.
[37]
Falk H, Forde PF, Bay ML, et al. Calcium electroporation induces tumor eradication, long-lasting immunity and cytokine responses in the CT26 colon cancer mouse model [J]. Oncoimmunology, 2017, 6(5): e1301332.
[38]
Łapińska Z, Dębiński M, Szewczyk A, et al. Electrochemotherapy with calcium chloride and 17β-estradiol modulated viability and apoptosis pathway in human ovarian cancer [J]. Pharmaceutics, 2020, 13(1): 19.
[39]
Frandsen SK, Gehl J. Effect of calcium electroporation in combination with metformin in vivo and correlation between viability and intracellular ATP level after calcium electroporation in vitro [J]. PLoS One, 2017, 12(7): e0181839.
[40]
Bazzolo B, Mittal L, Sieni E, et al. The electrical pulse application enhances intra-cellular localization and potentiates cytotoxicity of curcumin in breast cancer cells [J]. Bioelectrochemistry, 2021, 140: 107817.
[41]
Radica MK, Fabbri N, Santandrea G, et al. Use of electrochemotherapy in a voluminous chest wall recurrence of triple-negative breast cancer: case report [J]. AME Case Rep, 2020, 4: 30.
[42]
Russano F, Del Fiore P, Di Prata C, et al. The role of electrochemotherapy in the cutaneous and subcutaneous metastases from breast cancer: analysis of predictive factors to treatment from an italian cohort of patients [J]. Front Oncol, 2021, 11: 772144.
[43]
Campana LG, Galuppo S, Valpione S, et al. Bleomycin electrochemotherapy in elderly metastatic breast cancer patients: clinical outcome and management considerations [J]. J Cancer Res Clin Oncol, 2014, 140(9): 1557-1565.
[44]
Grischke EM, Rohm C, Stauss E, et al. Electrochemotherapy-supplementary treatment for loco-regional metastasized breast carcinoma administered to concomitant systemic therapy [J]. Radiol Oncol, 2017, 51(3): 317-323.
[45]
Sersa G, Cufer T, Paulin SM, et al. Electrochemotherapy of chest wall breast cancer recurrence [J]. Cancer Treat Rev, 2012, 38(5): 379-386.
[46]
Matthiessen LW, Kamby C, Hendel HW, et al. Electrochemotherapy as palliative treatment for chest wall recurrence of breast cancer-initial results [J]. EJC Suppl, 2009, 7(2): 273.
[47]
Matthiessen LW, Keshtgar M, Curatolo P, et al. Electrochemotherapy for breast cancer-results from the INSPECT database [J]. Clin Breast Cancer, 2018, 18(5): e909-e917.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[11] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[12] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[13] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[14] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[15] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?