切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 103 -106. doi: 10.3877/cma.j.issn.1674-0807.2021.02.007

所属专题: 文献

综述

外泌体影响乳腺癌转移机制的研究进展
顾志云1, 郑晓东1,()   
  1. 1. 400030 重庆大学附属肿瘤医院乳腺肿瘤中心
  • 收稿日期:2020-05-12 出版日期:2021-04-01
  • 通信作者: 郑晓东
  • 基金资助:
    中央高校(重庆大学)医工融合重点项目(2019CDYGZD 006)

Mechanism of exosomes affecting breast cancer metastasis

Zhiyun Gu1, Xiaodong Zheng1()   

  • Received:2020-05-12 Published:2021-04-01
  • Corresponding author: Xiaodong Zheng
引用本文:

顾志云, 郑晓东. 外泌体影响乳腺癌转移机制的研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(02): 103-106.

Zhiyun Gu, Xiaodong Zheng. Mechanism of exosomes affecting breast cancer metastasis[J]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(02): 103-106.

乳腺癌是女性发病率最高的恶性肿瘤。早期乳腺癌患者中的30%能够检测到循环肿瘤细胞,这是导致约90%乳腺癌患者转移致死的主要原因。外泌体是一系列具有生物功能的小囊泡,携带多种活性成分,不同类型供体细胞来源的外泌体均可影响乳腺癌细胞和基质细胞,在肿瘤微环境中发挥不同的作用,调控乳腺癌的转移。笔者从外泌体影响肿瘤微环境、转移前生态位形成、循环肿瘤细胞在血液和靶器官中存活机制等方面,综述了外泌体在乳腺癌进展和转移中的作用。

[1]
Campos A, Salomon C, Bustos R, et al. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines [J]. Nanomedicine, 2018, 13(20): 2597-2609.
[2]
Wang J, Wu Y, Guo J, et al. Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells [J]. Oncotarget, 2017, 8(47): 81 880-81 891.
[3]
Shtam T, Naryzhny S, Samsonov R, et al. Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling [J]. Breast Cancer Res Treat, 2019, 174(1): 129-141.
[4]
Takasugi M, Okada R, Takahashi A, et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2 [J]. Nat Commun, 2017, 8: 15 729.
[5]
Ding J, Xu Z, Zhang Y, et al. Exosome-mediated miR-222 transferring: An insight into NF-kappa-mediated breast cancer metastasis [J]. Exp Cell Res, 2018, 369(1): 129-138.
[6]
Kong X, Zhang J, Li J, et al. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells [J]. Biochem Biophys Res Commun, 2018, 501(2): 486-493.
[7]
Zhang P, Zhou HX, Lu KF, et al. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer [J]. Oncotargets Ther, 2018, 11: 291-299.
[8]
Cho JA, Park H, Lim EH, et al. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells [J]. Int J Oncol, 2012, 40(1): 130-138.
[9]
Baroni S, Romero-Cordoba S, Plantamura I, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts [J]. Cell Death Dis, 2016, 7(7): 2312.
[10]
Zhou X, Li T, Chen Y, et al. Mesenchymal stem cell-derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway [J]. Int J Oncol, 2019, 54(5): 1843-1852.
[11]
Sung JS, Kang CW, Kang S, et al. ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts [J]. Oncogene, 2020, 39(3): 664-676.
[12]
Yan W, Wu X, Zhou W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells [J]. Nat Cell Biol, 2018, 20(5): 597-609.
[13]
Lin RZ, Wang SH, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model [J]. Mol Cell Biochem, 2013, 383(1/2): 13-20.
[14]
Wang H, Wei H, Wang J, et al. MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer [J]. Mol Ther Nucl Acids, 2019, 19: 654-667.
[15]
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1 alpha/VEGF signaling axis in breast cancer cells [J]. Cell Oncol, 2017, 40(5): 457-470.
[16]
Pasquier J, Thawadi HA, Ghiabi P, et al. Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation [J]. Cancer Microenviron, 2014, 7(1-2): 41-59.
[17]
Treps L, Perret R, Edmond S, et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles [J]. J Extracell Vesicles, 2017, 6(1): 12.
[18]
Noman MZ, Janji B, Berchem G, et al. miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function [J]. Cancer Lett, 2016, 380(1): 257-262.
[19]
Labani-Motlagh A, Israelsson P, Ottander U, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity [J]. Tumor Biol, 2016, 37(4): 5455-5466.
[20]
Klinker MW, Lizzio V, Reed TJ, et al. Human B cell-derivec ymphoblastoid cell lines constitutively produce Fas ligand and secrete MHCII(+)FasL(+) killer exosomes [J]. Front Immunol, 2014, 5: 10.
[21]
Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappa B [J]. Sci Rep, 2014, 4: 5705.
[22]
Ham S, Lima LG, Chai EPZ, et al. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling [J]. Front Immunol, 2018, 9: 871.
[23]
Chen Y, Zeng C, Zhan Y, et al. Aberrant low expression of p85 alpha in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b [J]. Oncogene, 2017, 36(33): 4692-4705.
[24]
Donnarumma E, Fiore D, Nappa M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer [J]. Oncotarget, 2017, 8(12): 19 592-19 608.
[25]
Zhou WY, Fong MY, Min YF, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis [J]. Cancer Cell, 2014, 25(4): 501-515.
[26]
Zhang S, Weng T, Cheruba E, et al. Phosphatase POPX2 exhibits dual regulatory functions in cancer metastasis [J]. J Proteome Res, 2017, 16(2): 698-711.
[27]
Jung KO, Youn H, Lee CH, et al. Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells [J]. Oncotarget, 2017, 8(6): 9899-9910.
[28]
Di Modica M, Regondi V, Sandri M, et al. Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers [J]. Cancer Lett, 2017, 384: 94-100.
[29]
Seo M, Kim SM, Woo EY, et al. Stemness-attenuating miR-503-3p as a paracrine factor to regulate growth of Cancer stem cells [J]. Stem Cells Int, 2018, 2018: 4851949.
[30]
Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes) [J]. Biochem Soc Trans, 2013, 41: 245-251.
[31]
Xiang XY, Poliakov A, Liu C, et al. Induction of myeloid-derived suppressor cells by tumor exosomes [J]. Int J Cancer, 2009, 124(11): 2621-2633.
[32]
Abdulhussain MM, Hasan NA, Hussain AG. Interrelation of the circulating and tissue microRNA-21 with tissue PDCD4 expression and the invasiveness of Iraqi female breast tumors [J]. Indian J Clin Biochem, 2019, 34(1): 26-38.
[33]
Fong MY, Zhou WY, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis [J]. Nat Cell Biol, 2015, 17(2): 183-194.
[34]
Van Es N, Sturk A, Middeldorp S, et al. Effects of cancer on platelets [J]. Semin Oncol, 2014, 41(3): 311-318.
[35]
Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis [J]. Nature Reviews Cancer, 2011, 11(2): 123-134.
[36]
Bliss SA, Sinha G, Sandiford OA, et al. Mesenchymal stme cell-derived exosomes stimulate Cycling quiescence and early breast cancer dormancy in bone marrow [J]. Cancer Res, 2016, 76(19): 5832-5844.
[37]
Eltoukhy HS, Sinha G, Moore CA, et al. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy [J]. Biochimie, 2018, 155: 92-103.
[38]
Rodrigues G, Hoshino A, Kenific CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis [J]. Nat Cell Biol, 2019, 21(11): 1403-1412.
[39]
Tiedemann K, Sadvakassova G, Mikolajewicz N, et al. Exosomal release of L-Plastin by breast cancer cells facilitates metastatic bone osteolysis [J]. Transl Oncol, 2019, 12(3): 462-474..
[40]
Liu YF, Gu Y, Han YM, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils [J]. Cancer Cell, 2016, 30(2): 243-256.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要