切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 103 -106. doi: 10.3877/cma.j.issn.1674-0807.2021.02.007

所属专题: 文献

综述

外泌体影响乳腺癌转移机制的研究进展
顾志云1, 郑晓东1,()   
  1. 1. 400030 重庆大学附属肿瘤医院乳腺肿瘤中心
  • 收稿日期:2020-05-12 出版日期:2021-04-01
  • 通信作者: 郑晓东
  • 基金资助:
    中央高校(重庆大学)医工融合重点项目(2019CDYGZD 006)

Mechanism of exosomes affecting breast cancer metastasis

Zhiyun Gu1, Xiaodong Zheng1()   

  • Received:2020-05-12 Published:2021-04-01
  • Corresponding author: Xiaodong Zheng
引用本文:

顾志云, 郑晓东. 外泌体影响乳腺癌转移机制的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(02): 103-106.

Zhiyun Gu, Xiaodong Zheng. Mechanism of exosomes affecting breast cancer metastasis[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(02): 103-106.

乳腺癌是女性发病率最高的恶性肿瘤。早期乳腺癌患者中的30%能够检测到循环肿瘤细胞,这是导致约90%乳腺癌患者转移致死的主要原因。外泌体是一系列具有生物功能的小囊泡,携带多种活性成分,不同类型供体细胞来源的外泌体均可影响乳腺癌细胞和基质细胞,在肿瘤微环境中发挥不同的作用,调控乳腺癌的转移。笔者从外泌体影响肿瘤微环境、转移前生态位形成、循环肿瘤细胞在血液和靶器官中存活机制等方面,综述了外泌体在乳腺癌进展和转移中的作用。

[1]
Campos A, Salomon C, Bustos R, et al. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines [J]. Nanomedicine, 2018, 13(20): 2597-2609.
[2]
Wang J, Wu Y, Guo J, et al. Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells [J]. Oncotarget, 2017, 8(47): 81 880-81 891.
[3]
Shtam T, Naryzhny S, Samsonov R, et al. Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling [J]. Breast Cancer Res Treat, 2019, 174(1): 129-141.
[4]
Takasugi M, Okada R, Takahashi A, et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2 [J]. Nat Commun, 2017, 8: 15 729.
[5]
Ding J, Xu Z, Zhang Y, et al. Exosome-mediated miR-222 transferring: An insight into NF-kappa-mediated breast cancer metastasis [J]. Exp Cell Res, 2018, 369(1): 129-138.
[6]
Kong X, Zhang J, Li J, et al. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells [J]. Biochem Biophys Res Commun, 2018, 501(2): 486-493.
[7]
Zhang P, Zhou HX, Lu KF, et al. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer [J]. Oncotargets Ther, 2018, 11: 291-299.
[8]
Cho JA, Park H, Lim EH, et al. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells [J]. Int J Oncol, 2012, 40(1): 130-138.
[9]
Baroni S, Romero-Cordoba S, Plantamura I, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts [J]. Cell Death Dis, 2016, 7(7): 2312.
[10]
Zhou X, Li T, Chen Y, et al. Mesenchymal stem cell-derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway [J]. Int J Oncol, 2019, 54(5): 1843-1852.
[11]
Sung JS, Kang CW, Kang S, et al. ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts [J]. Oncogene, 2020, 39(3): 664-676.
[12]
Yan W, Wu X, Zhou W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells [J]. Nat Cell Biol, 2018, 20(5): 597-609.
[13]
Lin RZ, Wang SH, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model [J]. Mol Cell Biochem, 2013, 383(1/2): 13-20.
[14]
Wang H, Wei H, Wang J, et al. MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer [J]. Mol Ther Nucl Acids, 2019, 19: 654-667.
[15]
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1 alpha/VEGF signaling axis in breast cancer cells [J]. Cell Oncol, 2017, 40(5): 457-470.
[16]
Pasquier J, Thawadi HA, Ghiabi P, et al. Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation [J]. Cancer Microenviron, 2014, 7(1-2): 41-59.
[17]
Treps L, Perret R, Edmond S, et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles [J]. J Extracell Vesicles, 2017, 6(1): 12.
[18]
Noman MZ, Janji B, Berchem G, et al. miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function [J]. Cancer Lett, 2016, 380(1): 257-262.
[19]
Labani-Motlagh A, Israelsson P, Ottander U, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity [J]. Tumor Biol, 2016, 37(4): 5455-5466.
[20]
Klinker MW, Lizzio V, Reed TJ, et al. Human B cell-derivec ymphoblastoid cell lines constitutively produce Fas ligand and secrete MHCII(+)FasL(+) killer exosomes [J]. Front Immunol, 2014, 5: 10.
[21]
Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappa B [J]. Sci Rep, 2014, 4: 5705.
[22]
Ham S, Lima LG, Chai EPZ, et al. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling [J]. Front Immunol, 2018, 9: 871.
[23]
Chen Y, Zeng C, Zhan Y, et al. Aberrant low expression of p85 alpha in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b [J]. Oncogene, 2017, 36(33): 4692-4705.
[24]
Donnarumma E, Fiore D, Nappa M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer [J]. Oncotarget, 2017, 8(12): 19 592-19 608.
[25]
Zhou WY, Fong MY, Min YF, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis [J]. Cancer Cell, 2014, 25(4): 501-515.
[26]
Zhang S, Weng T, Cheruba E, et al. Phosphatase POPX2 exhibits dual regulatory functions in cancer metastasis [J]. J Proteome Res, 2017, 16(2): 698-711.
[27]
Jung KO, Youn H, Lee CH, et al. Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells [J]. Oncotarget, 2017, 8(6): 9899-9910.
[28]
Di Modica M, Regondi V, Sandri M, et al. Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers [J]. Cancer Lett, 2017, 384: 94-100.
[29]
Seo M, Kim SM, Woo EY, et al. Stemness-attenuating miR-503-3p as a paracrine factor to regulate growth of Cancer stem cells [J]. Stem Cells Int, 2018, 2018: 4851949.
[30]
Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes) [J]. Biochem Soc Trans, 2013, 41: 245-251.
[31]
Xiang XY, Poliakov A, Liu C, et al. Induction of myeloid-derived suppressor cells by tumor exosomes [J]. Int J Cancer, 2009, 124(11): 2621-2633.
[32]
Abdulhussain MM, Hasan NA, Hussain AG. Interrelation of the circulating and tissue microRNA-21 with tissue PDCD4 expression and the invasiveness of Iraqi female breast tumors [J]. Indian J Clin Biochem, 2019, 34(1): 26-38.
[33]
Fong MY, Zhou WY, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis [J]. Nat Cell Biol, 2015, 17(2): 183-194.
[34]
Van Es N, Sturk A, Middeldorp S, et al. Effects of cancer on platelets [J]. Semin Oncol, 2014, 41(3): 311-318.
[35]
Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis [J]. Nature Reviews Cancer, 2011, 11(2): 123-134.
[36]
Bliss SA, Sinha G, Sandiford OA, et al. Mesenchymal stme cell-derived exosomes stimulate Cycling quiescence and early breast cancer dormancy in bone marrow [J]. Cancer Res, 2016, 76(19): 5832-5844.
[37]
Eltoukhy HS, Sinha G, Moore CA, et al. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy [J]. Biochimie, 2018, 155: 92-103.
[38]
Rodrigues G, Hoshino A, Kenific CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis [J]. Nat Cell Biol, 2019, 21(11): 1403-1412.
[39]
Tiedemann K, Sadvakassova G, Mikolajewicz N, et al. Exosomal release of L-Plastin by breast cancer cells facilitates metastatic bone osteolysis [J]. Transl Oncol, 2019, 12(3): 462-474..
[40]
Liu YF, Gu Y, Han YM, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils [J]. Cancer Cell, 2016, 30(2): 243-256.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要