切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 261 -265. doi: 10.3877/cma.j.issn.1674-0807.2020.05.001

所属专题: 文献

专题笔谈

晚期三阴性乳腺癌免疫检查点抑制剂联合靶向治疗进展
韩逸群1, 王佳玉1, 徐兵河1,()   
  1. 1. 100021 北京,国家癌症中心 国家临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院内科
  • 收稿日期:2020-03-13 出版日期:2020-10-01
  • 通信作者: 徐兵河

Immune checkpoint inhibitors plus targeted therapy for advanced triple negative breast cancer

Yiqun Han1, Jiayu Wang1, Binghe Xu1,()   

  1. 1. Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2020-03-13 Published:2020-10-01
  • Corresponding author: Binghe Xu
  • About author:
    Corresponding author: Xu Binghe, Email:
引用本文:

韩逸群, 王佳玉, 徐兵河. 晚期三阴性乳腺癌免疫检查点抑制剂联合靶向治疗进展[J/OL]. 中华乳腺病杂志(电子版), 2020, 14(05): 261-265.

Yiqun Han, Jiayu Wang, Binghe Xu. Immune checkpoint inhibitors plus targeted therapy for advanced triple negative breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(05): 261-265.

随着对肿瘤增殖、侵袭和转移分子机制探索的不断深入,免疫治疗和靶向治疗逐渐成为晚期三阴性乳腺癌的新型治疗手段。临床前研究结果显示,靶向治疗可以通过重塑肿瘤微环境等协同免疫治疗,增强抗肿瘤免疫效应。目前,探索两者联合治疗的临床研究正在开展,包括免疫检查点抑制剂联合多腺苷二磷酸核糖聚合酶抑制剂、血管生成抑制剂、表观遗传修饰抑制剂等,疗效得到初步肯定。笔者就免疫检查点抑制剂联合靶向药物治疗晚期三阴性乳腺癌的机制、疗效和安全性等方面的进展作一介绍。

With the in-depth exploration in mechanisms of tumor proliferation, invasion and metastasis, immunotherapy and targeted therapy have gradually used for advanced triple negative breast cancer. Preclinical studies showed that targeted therapy could remodel tumor microenvironment and enhance the anti-tumor immune response in combination with immunotherapy. Currently, several clinical trials on the efficacy of the combination of both are ongoing, including immune checkpoint inhibitors plus poly(ADP-ribose) polymerase (PARP) inhibitors, angiogenesis inhibitors and epigenetic modification inhibitors. In this paper, we demonstrated the mechanism, clinical efficacy and safety of combination treatment of immune checkpoint inhibitors and targeted therapy drugs for advanced triple negative breast cancer.

[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68 (6): 394-424.
[2]
Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2011[J]. Ann Oncol, 2011, 22 (8): 1736-1747.
[3]
Waks AG, Winer EP. Breast cancer treatment: a review[J]. JAMA, 2019, 321 (3): 288-300.
[4]
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363 (20): 1938-1948.
[5]
Bonotto M, Gerratana L, Poletto E, et al. Measures of outcome in metastatic breast cancer: insights from a real-world scenario[J]. Oncologist, 2014, 19 (6): 608-615.

URL    
[6]
Goetz MP, Gradishar WJ, Anderson BO, et al. NCCN guidelines insights: breast cancer, version 3.2018[J]. J Natl Compr Canc Netw: NCCN, 2019, 17 (2): 118-126.
[7]
Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era[J]. BMC Med, 2019, 17 (1): 90.
[8]
Brown SD, Warren RL, Gibb EA, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival[J]. Genome Res, 2014, 24 (5): 743-750.

URL    
[9]
Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase Ⅲ randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98[J]. J Clin Oncol, 2013, 31 (7): 860-867.

URL    
[10]
Wimberly H, Brown JR, Schalper K, et al. PD-L1 Expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer[J]. Cancer Immunol Res, 2015, 3 (4): 326-332.
[11]
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018, 379 (22): 2108-2121.
[12]
Jia H, Truica CI, Wang B, et al. Immunotherapy for triple-negative breast cancer: existing challenges and exciting prospects[J]. Drug Resist Updat, 2017, 32: 1-15.
[13]
Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase Ⅱ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30 (3): 405-411.
[14]
Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase Ⅱ KEYNOTE-086 study [J]. Ann Oncol, 2019, 30 (3): 397-404.
[15]
Gallyas F Jr, Sumegi B. Mitochondrial protection by PARP inhibition[J]. Int J Mol Sci, 2020, 21 (8): 2767.
[16]
Byrum AK, Vindigni A, Mosammaparast N. Defining and modulating 'BRCAness’[J]. Trends Cell Biol, 2019, 29 (9): 740-751.
[17]
Dobzhansky T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura[J]. Genetics, 1946, 31(3): 269-290.
[18]
Dobzhansky T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura[J]. Genetics, 1946, 31 (3): 269-290.
[19]
Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA)[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21 (1): 134-147.
[20]
Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377 (6): 523-533.
[21]
Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression[J]. Clin Cancer Res, 2017, 23 (14): 3711-3720.
[22]
Prasanna T, Wu F, Khanna KK, et al. Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy[J]. Cancer Sci, 2018, 109 (11): 3383-3392.
[23]
Mella M, Kauppila JH, Karihtala P, et al. Tumor infiltrating CD8(+) T lymphocyte count is independent of tumor TLR9 status in treatment naive triple negative breast cancer and renal cell carcinoma[J]. Oncoimmunology, 2015, 4 (6): e1002726.
[24]
Huang J, Wang L, Cong Z, et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer[J]. Biochem Biophys Res Commun, 2015, 463 (4): 551-556.
[25]
Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma[J]. JAMA Oncol, 2019, 5 (8): 1141-1149.
[26]
Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment[J]. Nat Rev Clin Oncol, 2017, 14 (12): 717-734.
[27]
Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment[J]. Adv Mater, 2020, 32 (22): e2000055.
[28]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144 (5): 646-674.

URL    
[29]
Yi M, Jiao D, Qin S, et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment[J]. Mol Cancer, 2019, 18 (1): 60.
[30]
Hendry SA, Farnsworth RH, Solomon B, et al. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment[J]. Front Immunol, 2016, 7: 621.
[31]
Schmittnaegel M, Rigamonti N, Kadioglu E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade[J]. Sci Transl Med, 2017, 9 (385): eaak9670.
[32]
Raman D, Baugher PJ, Thu YM, et al. Role of chemokines in tumor growth[J]. Cancer Lett, 2007, 256 (2): 137-165.
[33]
Chang AL, Miska J, Wainwright DA, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells[J]. Cancer Res, 2016, 76 (19): 5671-5682.
[34]
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia[J]. Cancer Cell, 2014, 26 (5): 605-622.

URL    
[35]
Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab, 2019, 30 (1): 36-50.
[36]
Teleanu RI, Chircov C, Grumezescu AM, et al. Tumor angiogenesis and anti-Angiogenic strategies for cancer treatment[J]. J Clin Med, 2019, 9 (1): 84.
[37]
Wallin JJ, Bendell JC, Funke R, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma[J]. Nat Commun, 2016, 7: 12 624.
[38]
Carter T, Shaw H, Mulholland P. Combining ipilimumab and bevacizumab in glioblastoma: is it really safe and effective? Author response[J]. Clin Oncol (R Coll Radiol), 2016, 28 (10): 664.
[39]
Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma[J]. Cancer Immunol Res, 2014, 2 (7): 632-642.

URL    
[40]
Miles DW, Chan A, Dirix LY, et al. Phase Ⅲ study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer [J]. J Clin Oncol, 2010, 28 (20): 3239-3247.
[41]
Curigliano G, Pivot X, Cortes J, et al. Randomized phase Ⅱ study of sunitinib versus standard of care for patients with previously treated advanced triple-negative breast cancer[J]. Breast, 2013, 22 (5): 650-656.
[42]
Baselga J, Zamagni C, Gómez P, et al. RESILIENCE: Phase Ⅲ randomized, double-blind trial comparing sorafenib with capecitabine versus placebo with capecitabine in locally advanced or metastatic HER-2-negative breast cancer[J]. Clin Breast Cancer, 2017, 17 (8): 585-594.
[43]
Hu X, Zhang J, Xu B, et al. Multicenter phase Ⅱ study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer[J]. Int J Cancer, 2014, 135 (8): 1961-1969.
[44]
Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase Ⅱ trial[J]. J Immunother Cancer, 2020, 8 (1): e000696.
[45]
Li Q, Wang Y, Jia W, et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade[J]. Clin Cancer Res, 2019, 26 (7): 1712-1724.
[46]
Carlson RD, Flickinger JC Jr, Snook AE. Talkin’ toxins: from Coley’s to modern cancer immunotherapy[J]. Toxins (Basel), 2020, 12(4): 241.
[47]
Godfrey DI, Le Nours J, Andrews DM, et al. Unconventional T cell targets for cancer immunotherapy[J]. Immunity, 2018, 48 (3): 453-473.
[48]
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17 (9): 559-572.
[49]
Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19 (11): 1480-1492.
[50]
Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378 (14): 1277-1290.
[51]
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018, 378 (22): 2093-2104.
[52]
Santa-Maria CA, Kato T, Park JH, et al. A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer[J]. Oncotarget, 2018, 9 (27): 18 985-18 996.
[53]
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control[J]. Nat Rev Genet, 2016, 17 (8): 487-500.
[54]
张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传,2019, 41 (7): 567-581.
[55]
Huang M, Zhang J, Yan C, et al. Small molecule HDAC inhibitors: promising agents for breast cancer treatment[J]. Bioorg Chem, 2019, 91: 103 184.
[56]
Chao MW, Chu PC, Chuang HC, et al. Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability[J]. Oncotarget, 2016, 7 (2): 1796-1807.
[57]
Gameiro SR, Malamas AS, Tsang KY, et al. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells[J]. Oncotarget, 2016, 7 (7): 7390-7402.
[58]
Guerriero JL, Sotayo A, Ponichtera HE, et al. Class Ⅱa HDAC inhibition reduces breast tumors and metastases through anti-tumor macrophages[J]. Nature, 2017, 543 (7645): 428-432.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 牛海刚, 郭文科. 三阴性乳腺癌组织中双特异性磷酸酶14与核受体相互作用蛋白1的表达及预后价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 199-205.
[3] 刘世佳, 陶新楠, 史晋宇, 吕文豪, 张亚芬. 乳酸脱氢酶A在乳腺癌中的作用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(03): 175-179.
[4] 曾铖, 张剑. 抗体药物偶联物在三阴性乳腺癌中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(03): 140-145.
[5] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[6] 刘清, 汪志凌. 肠道真菌与儿童炎症性肠病[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 172-178.
[7] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[8] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[9] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[10] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[11] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[12] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[13] 赵海清, 张威, 李琴. 肌苷联合免疫检查点抑制剂在转移性结直肠癌患者中的临床疗效观察[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(01): 54-62.
[14] 卓长华, 叶韵斌, 陈昌江, 简锦亮, 王志纬. 林奇综合征相关性异时性结直肠癌的治疗[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(01): 32-37.
[15] 吕泉龙, 史文杰, 孙文国. 免疫检查点抑制剂在治疗转移性去势抵抗性前列腺癌中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 69-72.
阅读次数
全文


摘要