切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 50 -53. doi: 10.3877/cma.j.issn.1674-0807.2020.01.012

所属专题: 文献

综述

乳腺癌磷酸化蛋白质组学研究进展
王银1, 徐平1,()   
  1. 1. 430071 武汉大学药学院组合生物合成和药物开发教育部重点实验室;102206 北京蛋白质组研究中心
  • 收稿日期:2018-10-23 出版日期:2020-02-01
  • 通信作者: 徐平
  • 基金资助:
    国家自然科学基金青年基金资助项目(31670834、31870824、31700723); 精准医学研究重点专项资助项目(2017YFC0906600)

Phosphorylation proteomics in breast cancer

Yin Wang1, Ping Xu1()   

  • Received:2018-10-23 Published:2020-02-01
  • Corresponding author: Ping Xu
引用本文:

王银, 徐平. 乳腺癌磷酸化蛋白质组学研究进展[J]. 中华乳腺病杂志(电子版), 2020, 14(01): 50-53.

Yin Wang, Ping Xu. Phosphorylation proteomics in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(01): 50-53.

乳腺癌是发生于乳腺上皮组织的恶性肿瘤,其病死率居女性肿瘤首位。近年来,磷酸化蛋白质组学研究广泛,与乳腺癌的发病、临床诊断和治疗等各个方面均密切相关。笔者系统性回顾了磷酸化蛋白质组学在肿瘤治疗中的研究和应用,并重点介绍乳腺癌磷酸化蛋白质组学的最新研究进展。

图1 磷酸化蛋白质组学技术流程及其在肿瘤中的应用
[1]
Humphrey SJ, James DE, Mann M. Protein phosphorylation: a major switch mechanism for metabolic regulation[J]. Trends Endocrinol Metab, 2015, 26(12): 676-687.
[2]
Arrington JV, Hsu CC, Elder SG, et al. Recent advances in phosphoproteomics and application to neurological diseases[J]. Analyst, 2017, 142(23): 4373-4387.
[3]
Solari FA, Dell’aica M, Sickmann A, et al. Why phosphoproteomics is still a challenge[J]. Mol Biosyst, 2015, 11(6): 1487-1493.
[4]
Dickhut C, Feldmann I, Lambert J, et al. Impact of digestion conditions on phosphoproteomics[J]. J Proteome Res, 2014, 13(6): 2761-2770.
[5]
Gonczarowska-Jorge H, Loroch S, Dell'aica M, et al. Quantifying missing (phospho)proteome regions with the broad-specificity protease subtilisin[J]. Anal Chem,2017, 89(24): 13 137-13 145.
[6]
Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin[J]. Nat Protoc, 2016, 11(5): 993-1006.
[7]
Giansanti P, Aye TT, Van Den Toorn H, et al. An augmented multiple-protease-based human phosphopeptide atlas[J]. Cell Rep, 2015, 11(11): 1834-1843.
[8]
Golghalyani V, Neupartl M, Wittig I, et al. ArgC-like digestion: complementary or alternative to tryptic digestion?[J]. J Proteome Res, 2017, 16(2): 978-987.
[9]
Huesgen PF, Lange PF, Rogers LD, et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification[J]. Nat Methods, 2015, 12(1): 55-58.
[10]
Von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues[J]. Expert Rev Proteomics, 2015, 12(5): 469-487.
[11]
Zhou H, Low TY, Hennrich ML, et al. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment[J]. Mol Cell Proteomics, 2011, 10(10): M110.006452.
[12]
Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell, 2000, 100(1): 57-70.
[13]
Hindupur SK, Colombi M, Fuhs SR, et al. The protein histidine phosphatase LHPP is a tumour suppressor[J]. Nature, 2018, 555(7698): 678-682.
[14]
Ji S, Qin Y, Shi S, et al. ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer[J]. Cell Res, 2015, 25(5): 561-573.
[15]
Drake JM, Paull EO, Graham NA, et al. Phosphoproteome integration reveals patient-specific networks in prostate cancer[J]. Cell, 2016, 166(4): 1041-1054.
[16]
Haake SM, Li J, Bai Y, et al. Tyrosine kinase signaling in clear cell and papillary renal cell carcinoma revealed by mass spectrometry-based phosphotyrosine proteomics[J]. Clin Cancer Res, 2016, 22(22): 5605-5616.
[17]
Kong G, You X, Wen Z, et al. Downregulating Notch counteracts KrasG12D-induced ERK activation and oxidative phosphorylation in myeloproliferative neoplasm[J]. Leukemia,2019,33(3):671-685.
[18]
Ju J, Chen A, Deng Y, et al. NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression[J]. Nat Commun,2017, 8(1): 928.
[19]
Kalimutho M, Parsons K, Mittal D, et al. Targeted therapies for triple-negative breast cancer: combating a stubborn disease[J]. Trends Pharmacol Sci, 2015, 36(12): 822-846.
[20]
Brewster AM, Chavez-Macgregor M, Brown P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry[J]. Lancet Oncol, 2014, 15(13): e625-e634.
[21]
Tserga A, Chatziandreou I, Michalopoulos NV, et al. Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness[J]. Virchows Arch, 2016, 469(1): 35-43.
[22]
Ping Tang,魏兵.免疫组织化学染色在乳腺癌分子分型中的应用[J/CD].中华乳腺病杂志(电子版),2018,12(01):4-11.
[23]
Ueda S, Tsuda H, Sato K, et al. Alternative tyrosine phosphorylation of signaling kinases according to hormone receptor status in breast cancer overexpressing the insulin-like growth factor receptor type 1[J]. Cancer Sci, 2006, 97(7): 597-604.
[24]
Schmitz KJ, Grabellus F, Callies R, et al. Relationship and prognostic significance of phospho-(serine 166)-murine double minute 2 and Akt activation in node-negative breast cancer with regard to p53 expression[J]. Virchows Arch, 2006, 448(1): 16-23.
[25]
Zagorac I, Fernandez-Gaitero S, Penning R, et al. In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer[J]. Nat Commun, 2018, 9(1): 3501.
[26]
Gerarduzzi C, de Polo A, Liu XS, et al. Human epidermal growth factor receptor 4 (Her4) suppresses p53 protein via targeting the MDMX-MDM2 protein complex: implication of a novel MDMX SER-314 phosphosite[J]. J Biol Chem, 2016, 291(50): 25 937-25 949.
[27]
Wierer M, Verde G, Pisano P, et al. PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription[J]. Cell Rep, 2013, 3(6): 2021-2032.
[28]
Madden JM, Mueller KL, Bollig-Fischer A, et al. Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer[J]. Breast Cancer Res Treat, 2014, 147(2): 283-293.
[29]
Chen IH, Xue L, Hsu CC, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer[J]. Proc Natl Acad Sci U S A,2017, 114(12): 3175-3180.
[30]
汤琦,陈德滇,蔡尚立,等.乳腺癌内分泌治疗耐药分子机制的研究进展[J/CD].中华乳腺病杂志(电子版),2018,12(05):306-311.
[31]
Zhang Y, Wester L, He J, et al. IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer[J]. Oncogene, 2018, 37(14): 1869-1884.
[32]
Deng X, Kohanfars M,Hsu HM,et al. Combined phosphoproteomics and bioinformatics strategy in deciphering drug resistant related pathways in triple negative breast cancer[J]. Int J Proteomics, 2014, 2014: 390 781.
[33]
Ruprecht B, Zaal EA, Zecha J, et al. Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis[J]. Cancer Res, 2017, 77(8): 1842-1853.
[34]
Yates LR, Knappskog S, Wedge D, et al. Genomic evolution of breast cancer metastasis and relapse[J]. Cancer Cell, 2017, 32(2): 169-184.
[35]
Hagan S, Al-Mulla F, Mallon E, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis[J]. Clin Cancer Res, 2005, 11(20): 7392-7397.
[36]
Reithmeier A, Panizza E, Krumpel M, et al. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFbeta2/TbetaR and CD44 in MDA-MB-231 breast cancer cells[J]. BMC Cancer, 2017, 17(1): 650.
[37]
Kodack DP, Askoxylakis V, Ferraro GB, et al. The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation[J]. Sci Transl Med, 2017, 9(391): eaal4682.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要