[1] |
Humphrey SJ, James DE, Mann M. Protein phosphorylation: a major switch mechanism for metabolic regulation[J]. Trends Endocrinol Metab, 2015, 26(12): 676-687.
|
[2] |
Arrington JV, Hsu CC, Elder SG, et al. Recent advances in phosphoproteomics and application to neurological diseases[J]. Analyst, 2017, 142(23): 4373-4387.
|
[3] |
Solari FA, Dell’aica M, Sickmann A, et al. Why phosphoproteomics is still a challenge[J]. Mol Biosyst, 2015, 11(6): 1487-1493.
|
[4] |
Dickhut C, Feldmann I, Lambert J, et al. Impact of digestion conditions on phosphoproteomics[J]. J Proteome Res, 2014, 13(6): 2761-2770.
|
[5] |
Gonczarowska-Jorge H, Loroch S, Dell'aica M, et al. Quantifying missing (phospho)proteome regions with the broad-specificity protease subtilisin[J]. Anal Chem,2017, 89(24): 13 137-13 145.
|
[6] |
Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin[J]. Nat Protoc, 2016, 11(5): 993-1006.
|
[7] |
Giansanti P, Aye TT, Van Den Toorn H, et al. An augmented multiple-protease-based human phosphopeptide atlas[J]. Cell Rep, 2015, 11(11): 1834-1843.
|
[8] |
Golghalyani V, Neupartl M, Wittig I, et al. ArgC-like digestion: complementary or alternative to tryptic digestion?[J]. J Proteome Res, 2017, 16(2): 978-987.
|
[9] |
Huesgen PF, Lange PF, Rogers LD, et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification[J]. Nat Methods, 2015, 12(1): 55-58.
|
[10] |
Von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues[J]. Expert Rev Proteomics, 2015, 12(5): 469-487.
|
[11] |
Zhou H, Low TY, Hennrich ML, et al. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment[J]. Mol Cell Proteomics, 2011, 10(10): M110.006452.
|
[12] |
Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell, 2000, 100(1): 57-70.
|
[13] |
Hindupur SK, Colombi M, Fuhs SR, et al. The protein histidine phosphatase LHPP is a tumour suppressor[J]. Nature, 2018, 555(7698): 678-682.
|
[14] |
Ji S, Qin Y, Shi S, et al. ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer[J]. Cell Res, 2015, 25(5): 561-573.
|
[15] |
Drake JM, Paull EO, Graham NA, et al. Phosphoproteome integration reveals patient-specific networks in prostate cancer[J]. Cell, 2016, 166(4): 1041-1054.
|
[16] |
Haake SM, Li J, Bai Y, et al. Tyrosine kinase signaling in clear cell and papillary renal cell carcinoma revealed by mass spectrometry-based phosphotyrosine proteomics[J]. Clin Cancer Res, 2016, 22(22): 5605-5616.
|
[17] |
Kong G, You X, Wen Z, et al. Downregulating Notch counteracts KrasG12D-induced ERK activation and oxidative phosphorylation in myeloproliferative neoplasm[J]. Leukemia,2019,33(3):671-685.
|
[18] |
Ju J, Chen A, Deng Y, et al. NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression[J]. Nat Commun,2017, 8(1): 928.
|
[19] |
Kalimutho M, Parsons K, Mittal D, et al. Targeted therapies for triple-negative breast cancer: combating a stubborn disease[J]. Trends Pharmacol Sci, 2015, 36(12): 822-846.
|
[20] |
Brewster AM, Chavez-Macgregor M, Brown P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry[J]. Lancet Oncol, 2014, 15(13): e625-e634.
|
[21] |
Tserga A, Chatziandreou I, Michalopoulos NV, et al. Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness[J]. Virchows Arch, 2016, 469(1): 35-43.
|
[22] |
Ping Tang,魏兵.免疫组织化学染色在乳腺癌分子分型中的应用[J/CD].中华乳腺病杂志(电子版),2018,12(01):4-11.
|
[23] |
Ueda S, Tsuda H, Sato K, et al. Alternative tyrosine phosphorylation of signaling kinases according to hormone receptor status in breast cancer overexpressing the insulin-like growth factor receptor type 1[J]. Cancer Sci, 2006, 97(7): 597-604.
|
[24] |
Schmitz KJ, Grabellus F, Callies R, et al. Relationship and prognostic significance of phospho-(serine 166)-murine double minute 2 and Akt activation in node-negative breast cancer with regard to p53 expression[J]. Virchows Arch, 2006, 448(1): 16-23.
|
[25] |
Zagorac I, Fernandez-Gaitero S, Penning R, et al. In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer[J]. Nat Commun, 2018, 9(1): 3501.
|
[26] |
Gerarduzzi C, de Polo A, Liu XS, et al. Human epidermal growth factor receptor 4 (Her4) suppresses p53 protein via targeting the MDMX-MDM2 protein complex: implication of a novel MDMX SER-314 phosphosite[J]. J Biol Chem, 2016, 291(50): 25 937-25 949.
|
[27] |
Wierer M, Verde G, Pisano P, et al. PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription[J]. Cell Rep, 2013, 3(6): 2021-2032.
|
[28] |
Madden JM, Mueller KL, Bollig-Fischer A, et al. Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer[J]. Breast Cancer Res Treat, 2014, 147(2): 283-293.
|
[29] |
Chen IH, Xue L, Hsu CC, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer[J]. Proc Natl Acad Sci U S A,2017, 114(12): 3175-3180.
|
[30] |
汤琦,陈德滇,蔡尚立,等.乳腺癌内分泌治疗耐药分子机制的研究进展[J/CD].中华乳腺病杂志(电子版),2018,12(05):306-311.
|
[31] |
Zhang Y, Wester L, He J, et al. IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer[J]. Oncogene, 2018, 37(14): 1869-1884.
|
[32] |
Deng X, Kohanfars M,Hsu HM,et al. Combined phosphoproteomics and bioinformatics strategy in deciphering drug resistant related pathways in triple negative breast cancer[J]. Int J Proteomics, 2014, 2014: 390 781.
|
[33] |
Ruprecht B, Zaal EA, Zecha J, et al. Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis[J]. Cancer Res, 2017, 77(8): 1842-1853.
|
[34] |
Yates LR, Knappskog S, Wedge D, et al. Genomic evolution of breast cancer metastasis and relapse[J]. Cancer Cell, 2017, 32(2): 169-184.
|
[35] |
Hagan S, Al-Mulla F, Mallon E, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis[J]. Clin Cancer Res, 2005, 11(20): 7392-7397.
|
[36] |
Reithmeier A, Panizza E, Krumpel M, et al. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFbeta2/TbetaR and CD44 in MDA-MB-231 breast cancer cells[J]. BMC Cancer, 2017, 17(1): 650.
|
[37] |
Kodack DP, Askoxylakis V, Ferraro GB, et al. The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation[J]. Sci Transl Med, 2017, 9(391): eaal4682.
|