切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 294 -298. doi: 10.3877/cma.j.issn.1674-0807.2018.05.007

所属专题: 文献

论著

三阴性乳腺癌中程序性死亡配体1的表达及其与PTEN基因的关系
魏开鹏1, 陈海莺2, 陈燕红1, 邱建龙1,()   
  1. 1. 362000 泉州,解放军第180医院病理科
    2. 362000 泉州,解放军第180医院外科
  • 收稿日期:2017-12-07 出版日期:2018-10-01
  • 通信作者: 邱建龙

Expression of programmed death ligand 1 in triple negative breast cancer and its relationship with PTEN

Kaipeng Wei1, Haiying Chen2, Yanhong Chen1, Jianlong Qiu1,()   

  1. 1. Department of Pathology, No.180 Hospital of PLA, Quanzhou 362000, China
    2. Department of Surgery, No.180 Hospital of PLA, Quanzhou 362000, China
  • Received:2017-12-07 Published:2018-10-01
  • Corresponding author: Jianlong Qiu
  • About author:
    Corresponding author: Qiu Jianlong, Email:
引用本文:

魏开鹏, 陈海莺, 陈燕红, 邱建龙. 三阴性乳腺癌中程序性死亡配体1的表达及其与PTEN基因的关系[J/OL]. 中华乳腺病杂志(电子版), 2018, 12(05): 294-298.

Kaipeng Wei, Haiying Chen, Yanhong Chen, Jianlong Qiu. Expression of programmed death ligand 1 in triple negative breast cancer and its relationship with PTEN[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(05): 294-298.

目的

探讨程序性死亡配体1(PD-L1)在三阴性乳腺癌(TNBC)中的表达情况及其与PTEN基因的关系。

方法

通过癌症基因组图谱(TCGA)数据库查询PD-L1 mRNA在浸润性乳腺癌数据集(包括115例TNBC和702例非TNBC)中的表达情况。收集2012年1月至2016年12月解放军第180医院收治的182例浸润性乳腺癌术后石蜡包埋组织标本,包括62例TNBC和120例非TNBC,并用免疫组织化学方法检测PD-L1和PTEN的表达情况。用t检验比较TCGA数据库中2组的PD-L1 mRNA表达量,率的比较用χ2检验,Mann-Whitney U秩和检验比较石蜡标本中2组PD-L1表达强度,并用χ2检验和Spearman秩相关检验分析PD-L1与PTEN表达的相关性。

结果

TCGA数据库分析显示,浸润性乳腺癌中3.8%(31/817)有PD-L1 mRNA上调,其中TNBC组的表达上调率为8.7%(10/115),高于非TNBC组的3.0%(21/702)(χ2=7.314,P=0.007),TNBC组的PD-L1 mRNA表达量为8.05±0.91,高于非TNBC组的7.38±0.73 (t=7.510,P<0.001)。石蜡标本的免疫组织化学结果显示,TNBC组的PD-L1阳性表达率为14.5%(9/62),高于非TNBC组的5.0% (6/120)(χ2=4.895,P=0.027),而且PD-L1阳性表达强度也高于非TNBC组(Z=-2.291,P=0.022)。TNBC石蜡标本中PD-L1与PTEN蛋白表达呈负相关(χ2=6.913,P=0.009; r=-0.382,P=0.002)。

结论

TNBC中PD-L1表达高于非TNBC,并与PTEN负相关,其可能成为TNBC患者的免疫治疗靶点。

Objective

To investigate the expression of programmed death ligand 1(PD-L1) in triple negative breast cancer (TNBC) and its relationship with PTEN expression.

Methods

In the Cancer Genome Atlas (TCGA) database, the expression of PD-L1 mRNA in the invasive breast cancer dataset was analyzed, including 115 TNBC cases and 702 non-TNBC cases. A total of 182 paraffin-embedded tissue specimens from invasive breast cancer patients admitted to the No.180 Hospital of PLA from January 2012 to December 2016 were collected and the expression of PD-L1 and PTEN was immunohistochemically detected. PD-L1 mRNA expression was compared between two groups in TCGA database using t test. χ2 test was used to compare the rates. The intensity of PD-L1 positive expression in paraffin-embedded specimens were compared between two groups using Mann-Whitney U test. χ2 test and Spearman rank test were used to analyze the correlation between PD-L1 and PTEN expression.

Results

In TCGA database, PD-L1 mRNA level was up-regulated in 3.8% (31/817) of invasive breast cancer. The up-regulation rate of PD-L1 mRNA in TNBC (8.7%, 10/115) was significantly higher than that in non-TNBC (3.0%, 21/702) (χ2=7.314, P=0.007). PD-L1 mRNA expression in TNBC was significantly higher than that in non-TNBC(8.05±0.91 vs 7.38±0.73, t=7.510, P<0.001). The immunohistological results of 182 paraffin-embedded tissue specimens showed that the positive expression rate of PD-L1 in TNBC (14.5%, 9/62) was significantly higher than that in non-TNBC(5.0%, 6/120)(χ2=4.895, P=0.027), and the expression intensity of PD-L1 in TNBC was significantly higher than that in non-TNBC(Z=-2.291, P=0.022). The PD-L1 protein expression was negatively correlated with PTEN protein expression in paraffin-embedded TNBC specimens (χ2=6.913, P=0.009, r=-0.382, P=0.002).

Conclusion

PD-L1, which shows higher expression in TNBC patients than in non-TNBC patients and a negative correlation with PTEN, may be a potential target for TNBC immunotherapy.

图1 浸润性乳腺癌标本中PD-L1和PTEN的蛋白表达 a图为TNBC组织病理图(HE ×200);b图为TNBC组织PD-L1的免疫组织化学染色(×200);c图为非TNBC组织PD-L1的免疫组织化学染色(×200);d图为PD-L1免疫组织化学染色阴性对照图(×200);e、f图为PD-L1阳性的TNBC标本,其中e图为PD-L1的免疫组织化学染色(×200),阳性颗粒定位于细胞膜,f图为PTEN的免疫组织化学染色(×200),未着色呈阴性;g、h图为PD-L1阴性的TNBC标本,其中g图为PD-L1的免疫组织化学染色(×200),未着色呈阴性,h图为PTEN的免疫组织化学染色(×200),阳性颗粒定位于细胞质
表1 182例浸润性乳腺癌中PD-L1蛋白的表达强度
表2 62例三阴性乳腺癌标本中PD-L1与PTEN蛋白表达的关系(例)
[1]
黄晓嘉,唐海林,谢小明. 程序性死亡配体1在三阴性乳腺癌中的研究进展[J/CD]. 中华乳腺病杂志(电子版), 2017, 11(4): 234-237.
[2]
Bianchini G,Balko JM,Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease[J]. Nat Rev Clin Oncol, 2016, 13(11): 674-690.
[3]
Chen L,Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol, 2013, 13(4): 227-242.
[4]
Tumeh PC,Harview CL,Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571.
[5]
Sharma P,Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential[J]. Cell, 2015, 161(2): 205-214.
[6]
Jones N,Bonnet F,Sfar S, et al. Comprehensive analysis of PTEN status in breast carcinomas[J]. Int J Cancer, 2013, 133(2): 323-334.
[7]
Gao J,Aksoy BA,Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1.
[8]
Hammond ME,Hayes DF,Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer[J]. J Clin Oncol, 2010, 28(16): 2784-2795.
[9]
《乳腺癌HER2检测指南(2014版)》编写组. 乳腺癌HER2检测指南(2014版)[J]. 中华病理学杂志, 2014, 43(4): 262-267.
[10]
Hirsch FR,Mcelhinny A,Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project[J]. J Thorac Oncol, 2017, 12(2): 208-222.
[11]
Beg S,Siraj AK,Prabhakaran S, et al. Loss of PTEN expression is associated with aggressive behavior and poor prognosis in Middle Eastern triple-negative breast cancer[J]. Breast Cancer Res Treat, 2015, 151(3): 541-553.
[12]
Wahba HA,El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer[J]. Cancer Biol Med, 2015, 12(2): 106-116.
[13]
O’Reilly EA,Gubbins L,Sharma S, et al. The fate of chemoresistance in triple negative breast cancer(TNBC)[J]. BBA Clin, 2015, 3: 257-275.
[14]
Zou W,Wolchok JD,Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8(328): 328-332.
[15]
Ostrand-Rosenberg S,Horn LA,Alvarez JA, et al. Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells[J]. Cancer Immunol Immunother, 2015, 64(10): 1287-1293.
[16]
Brahmer JR,Tykodi SS,Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465.
[17]
Topalian SL,Drake CG,Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy[J]. Cancer Cell, 2015, 27(4): 450-461.
[18]
Nanda R,Chow LQ,Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study[J]. J Clin Oncol, 2016, 34(21): 2460-2467.
[19]
Rodgers SJ,Ferguson DT,Mitchell CA, et al. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases[J]. Biosci Rep, 2017, 37(1). pii: BSR20160432.
[20]
Xu C,Fillmore CM,Koyama S, et al. Loss of LKB1 and PTEN leads to lung squamous cell carcinoma with elevated PD-L1 expression[J]. Cancer Cell, 2014, 25(5): 590-604.
[21]
Cossu-Rocca P,Orrù S,Muroni MR, et al. Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer[J]. PLoS One, 2015, 10(11): e0141763.
[22]
Wei SC,Levine JH,Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade[J]. Cell, 2017, 170(6): 1120-1133.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[15] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
阅读次数
全文


摘要