切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 172 -176. doi: 10.3877/cma.j.issn.1674-0807.2018.03.009

所属专题: 文献

综述

自噬在三阴性乳腺癌中的研究进展
王露玉1, 狄琳娜2, 吕明明3, 朱维培4, 殷虹3,()   
  1. 1. 210004 南京医科大学附属南京市妇幼保健院乳腺病科;215000 苏州大学附属第二医院妇产科
    2. 215002 苏州市立医院本部甲乳外科
    3. 210004 南京医科大学附属南京市妇幼保健院乳腺病科
    4. 215000 苏州大学附属第二医院妇产科
  • 收稿日期:2016-06-12 出版日期:2018-06-01
  • 通信作者: 殷虹
  • 基金资助:
    国家自然科学基金资助项目(81402172); 江苏省科技计划资助项目(BK20130074)

Research progress of autophagy in triple negative breast cancer

Luyu Wang1, Linna Di2, Mingming Lyu3   

  • Received:2016-06-12 Published:2018-06-01
引用本文:

王露玉, 狄琳娜, 吕明明, 朱维培, 殷虹. 自噬在三阴性乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2018, 12(03): 172-176.

Luyu Wang, Linna Di, Mingming Lyu. Research progress of autophagy in triple negative breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(03): 172-176.

细胞自噬是真核细胞对细胞内物质进行周转的重要过程,对于维持细胞内环境的稳定和营养物质的循环利用至关重要。自噬在肿瘤细胞的治疗中起到双重的作用,既可引起癌细胞自噬性死亡,提高细胞对放化疗的敏感性,有助于肿瘤的治疗,又可在不良环境中保护细胞,增加癌细胞的耐药性及提高癌细胞的生存率。在目前的研究报道中,调控自噬活性的信号分子将可能成为三阴性乳腺癌潜在的诊治靶点。笔者针对细胞自噬与三阴性乳腺癌的增殖、迁移、侵袭等功能,放射治疗、药物治疗及预后等方面的研究进展进行综述。

[1]
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases[J]. Nat Rev Drug Discov, 2012, 11(9): 709-730.
[2]
Jiang P, Mizushima N. Autophagy and human diseases[J]. Cell Res, 2014, 24(1): 69-79.
[3]
Debnath J. The multifaceted roles of autophagy in tumors-implications for breast cancer[J]. J Mammary Gland Biol Neoplasia, 2011, 16(3): 173-187.
[4]
White E. Deconvoluting the context-dependent role for autophagy in cancer[J]. Nat Rev Cancer, 2012, 12(6): 401-410.
[5]
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
[6]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-386.
[7]
Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need[J]. Oncologist, 2011, 16 Suppl 1: 1-11.
[8]
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70.
[9]
Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer[J]. Clin Chem, 2011, 57(1): 84-91.
[10]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1): 27-42.
[11]
Levine B, Kroemer G. Autophagy in aging, disease and death: the true identity of a cell death impostor[J]. Cell Death Differ, 2009, 16(1): 1-2.
[12]
Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy[J], Nat Cell Biol, 2010, 12(9): 814-822.
[13]
Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182): 1069-1075.
[14]
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40(2): 280-293.
[15]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet, 2009, 43: 67-93.
[16]
Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth[J]. Genes Dev, 2011, 25(7): 717-729.
[17]
Joshi S, Kumar S, Ponnusamy MP, et al. Hypoxia-induced oxidative stress promotes MUC4 degradation via autophagy to enhance pancreatic cancer cells survival[J]. Oncogene, 2016, 35(45): 5882-5892.
[18]
Liu W, Yu G, Yu W, et al. Autophagy inhibits apoptosis induced by agrocybe aegerita lectin in hepatocellular carcinoma[J].Anticancer Agents Med Chem, 2017, 17(2): 221-229.
[19]
Liu YL, Yang PM, Shun CT, et al. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma[J]. Autophagy, 2010, 6(8): 1057-1065.
[20]
Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab [J]. PLoS One, 2009, 4(7): e6251.
[21]
Kuo PL, Hsu YL, Cho CY. Plumbagin induces G(2)-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells[J]. Mol Cancer Ther, 2006, 5(12): 3209-3221.
[22]
Sinha S, Roy S, Reddy BS, et al. A lipid-modified estrogen derivative that treats breast cancer independent of estrogen receptor expression through simultaneous induction of autophagy and apoptosis[J]. Mol Cancer Res, 2011, 9(3): 364-374.
[23]
陈莎. IBP抑制自噬在乳腺癌增殖转移中的作用及其机制研究[D]. 重庆:第三军医大学,2013.
[24]
原红军,吴爱国,王梦川,等. 正常和低氧环境下转染beclin-1对乳腺癌细胞BT-549的抑制作用[J/CD]. 中华乳腺病杂志(电子版),2012, 6(4):383-393.
[25]
Hamurcu Z, Delibai N, Geçene S, et al. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells [J]. J Cancer Res Clin Oncol, 2018, 144(3): 415-430.
[26]
韩起.分子伴侣自噬(CMA)在乳腺癌增殖转移中的作用及其机制研究[D].重庆:第三军医大学,2014.
[27]
Wen J, Yeo S, Wang C, et al. Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis[J]. Breast Cancer Res Treat, 2015, 149(3): 619-629.
[28]
Huck B, Duss S, Hausser A, et al. Elevated protein kinase D3 (PKD3) expression supports proliferation of triple-negative breast cancer cells and contributes to mTORC1-S6K1 pathway activation[J]. J Biol Chem, 2014, 289(6): 3138-3147.
[29]
Wang M, Zhang J, Huang Y, et al. Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells [J]. Med Sci Monit, 2017, 23: 3904-3912.
[30]
易贺庆. miR-199a-5p在电离辐射诱导乳腺癌细胞自噬中作用的研究[D]. 长春:吉林大学,2013.
[31]
孙权权. miR-200c靶向UBQLN1调节自噬及乳腺癌的辐射抵抗[D]. 广州:南方医科大学,2014.
[32]
Zhou ZR, Yang ZZ, Wang SJ, et al. The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy[J]. Acta Pharmacol Sin, 2017, 38(4): 513-523.
[33]
Zhang L, Shamaladevi N, Jayaprakasha GK, et al. Polyphenol-rich extract of Pimenta dioica berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice[J]. Oncotarget, 2015, 6(18): 16 379-16 395.
[34]
Wang S, Chen XA, Hu J, et al. ATF4 gene network mediates cellular response to the anticancer PAD inhibitor YW3-56 in triple-negative breast cancer cells [J]. Mol Cancer Ther, 2015, 14(4): 877-888.
[35]
Al Dhaheri Y, Attoub S, Ramadan G, et al. Carnosol induces ROS-mediated beclin1-independent autophagy and apoptosis in triple negative breast cancer[J]. PLoS One, 2014, 9(10): e109630.
[36]
Zhang L, Guo M, Li J, et al. Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer[J]. Mol Biosyst, 2015, 11(11): 2860-2866.
[37]
全军利,贺文兴,吴斯敏,等. 隐丹参酮对乳腺癌MDA-MB-231细胞自噬和侵袭迁移的影响[J].广西医科大学学报,2015, 32(1):23-26.
[38]
Li HC, Xia ZH, Chen YF, et al. Cantharidin inhibits the growth of triple-negative breast cancer cells by suppressing autophagy and inducing apoptosis in vitro and in vivo[J]. Cell Physiol Biochem, 2017, 43(5): 1829-1840.
[39]
Braicu C, Pileczki V, Pop L, et al. Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model[J]. PLoS One, 2015, 10(4): e0120936.
[40]
周静,李国兵,郑怡,等. 莲心碱对乳腺癌细胞MDA-MB-231自噬功能的影响[J]. 第三军医大学学报,2015, 37(7):629-633.
[41]
Wang Z, Shi X, Li Y, et al. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells[J]. Cell Death Dis, 2014, 5: e1563.
[42]
Aydinlik S, Erkisa M, Cevatemre B, et al. Enhanced cytotoxic activity of doxorubicin through the inhibition of autophagy in triple negative breast cancer cell line[J]. Biochim Biophys Acta, 2017, 1861(2): 49-57.
[43]
陈莎,韩起,王旭辉,等. 调节自噬对乳腺癌细胞紫杉醇耐药性影响的实验研究[J]. 时珍国医国药,2015, 37(7):629-663.
[44]
苏冰. 下调MTDH基因抑制表柔比星诱导的三阴性乳腺癌细胞自噬现象的研究[D]. 大连:大连医科大学,2014.
[45]
Chen M, He M, Song Y, et al. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells[J]. Int J Mol Med, 2014, 34(1): 276-282.
[46]
Lefort S, Joffre C, Kieffer Y, et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers[J]. Autophagy, 2014, 10(12): 2122-2142.
[47]
Park JH, Kim KP, Ko JJ, et al. PI3K/Akt/mTOR activation by suppression of ELK3 mediates chemosensitivity of MDA-MB-231 cells to doxorubicin by inhibiting autophagy[J]. Biochem Biophys Res Commun, 2016, 477(2): 277-282.
[48]
Fan YX, Dai YZ, Wang XL, et al. MiR-18a upregulation enhances autophagy in triple negative cancer cells via inhibiting mTOR signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2016, 20(11): 2194-2200.
[49]
Vogel RI, Coughlin K, Scotti A, et al. Simultaneous inhibition of deubiquitinating enzymes (DUBs) and autophagy synergistically kills breast cancer cells[J]. Oncotarget, 2015, 6(6): 4159-4170.
[50]
Lee WY, Hsu KF, Chiang TA, et al. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth[J]. Nutr Cancer, 2015, 67(2): 275-284.
[51]
Thomas S, Sharma N, Golden EB, et al. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors[J]. Cancer Lett, 2012, 325(1): 63-71.
[52]
Rao R, Balusu R, Fiskus W, et al. Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells[J]. Mol Cancer Ther, 2012, 11(4): 973-983.
[53]
刘兆芸,贺科文,宋兴国,等. 自噬抑制剂可增强三阴性乳腺癌细胞系MDA-MB-468和MDA-MB-231对吉非替尼的敏感性[J].中华肿瘤杂志,2016, 38(6):417-424.
[54]
Zhao H, Yang M, Zhao J, et al. High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer[J]. Med Oncol, 2013, 30(1): 475.
[55]
Choi J, Jung W, Koo JS. Expression of autophagy-related markers beclin-1, light chain 3A, light chain 3B and p62 according to the molecular subtype of breast cancer[J]. Histopathology, 2013, 62(2): 275-286.
[56]
Wang MC, Wu AG, Huang YZ, et al. Autophagic regulation of cell growth by altered expression of Beclin 1 in triple-negative breast cancer[J]. Int J Clin Exp Med, 2015, 8(5): 7049-7058.
[57]
Chittaranjan S, Bortnik S, Dragowska WH, et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer[J]. Clin Cancer Res, 2014, 20(12): 3159-3173.
[58]
郑临海,吴爱国,范旭龙,等. 短程低氧条件下乳腺癌BT549细胞表达beclin 1基因对上皮间质转化的影响[J/CD]. 中华乳腺病杂志(电子版), 2014, 8(1):13-21.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[12] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[13] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
阅读次数
全文


摘要