切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 135 -140. doi: 10.3877/cma.j.issn.1674-0807.2018.03.002

所属专题: 文献

论著

比卡鲁胺联合紫杉醇对雄激素受体阳性三阴性乳腺癌MDA-MB-231细胞的增殖抑制作用
丁钥1, 许焱1, 丁丽1, 朱小泉1, 张永强1,()   
  1. 1. 100730 北京医院 国家老年医学中心肿瘤内科
  • 收稿日期:2017-10-31 出版日期:2018-06-01
  • 通信作者: 张永强

Inhibitory effect of bicalutamide and paclitaxel on proliferation of androgen receptor-positive triple negative breast cancer MDA-MB-231 cells

Yue Ding1, Yan Xu1, Li Ding1, Xiaoquan Zhu1, Yongqiang Zhang1,()   

  1. 1. Department of Medical Oncology, Beijing Hospital/National Center of Gerontology, Beijing 100730, China
  • Received:2017-10-31 Published:2018-06-01
  • Corresponding author: Yongqiang Zhang
  • About author:
    Corresponding author: Zhang Yongqiang, Email:
引用本文:

丁钥, 许焱, 丁丽, 朱小泉, 张永强. 比卡鲁胺联合紫杉醇对雄激素受体阳性三阴性乳腺癌MDA-MB-231细胞的增殖抑制作用[J/OL]. 中华乳腺病杂志(电子版), 2018, 12(03): 135-140.

Yue Ding, Yan Xu, Li Ding, Xiaoquan Zhu, Yongqiang Zhang. Inhibitory effect of bicalutamide and paclitaxel on proliferation of androgen receptor-positive triple negative breast cancer MDA-MB-231 cells[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(03): 135-140.

目的

探讨比卡鲁胺(BIC)联合化疗药物紫杉醇(PTX)对雄激素受体(AR)阳性的三阴性乳腺癌MDA-MB-231细胞的增殖抑制作用及可能的作用机制。

方法

采用CCK-8试剂盒观察不同浓度的BIC (0.1、1.0、10.0 μmol/L)和PTX(0.1、1.0、10.0、100.0、1 000.0、10 000.0 nmol/L)以单药及不同联合给药方式处理后,对MDA-MB-231细胞增殖的抑制作用。细胞增殖抑制率比较采用单因素方差分析。组间两两比较采用LSD法。选取10 nmol/L PTX及10 nmol/L DMSO分别处理MDA-MB-231细胞样品(各3个)72 h,采用生物信息学方法分析样品的相关基因表达芯片数据,采用校正t检验筛选出差异基因。

结果

使用不同浓度的BIC分别处理MDA-MB-231细胞24、48、72 h后,各组MDA-MB-231细胞增殖抑制率在不同时间点差异均有统计学意义(F=4.124、8.189、4.139, P=0.037、0.004、0.032)。BIC 10.0 μmol/L组MDA-MB-231细胞增殖抑制率在48 h最高,为(12.9 ± 5.5)%。不同浓度的PTX分别处理MDA-MB-231细胞24、48、72 h后,不同浓度组MDA-MB-231细胞增殖抑制率在不同时间点差异均有统计学意义(F=8.407、47.432、14.907, P均<0.001)。PTX在48 h时对MDA-MB-231细胞的半数抑制浓度(IC50)为5 380.0 nmol/L。5 000.0 nmol/L PTX单药或联合不同浓度(0.1、1.0、10.0 μmol/L)的BIC同时处理MDA-MB-231细胞48 h后,5 000.0 nmol/L PTX单药处理组与3个实验组中细胞增殖抑制率分别为(53.2±2.7)%、(53.2±3.1)%、(51.7±3.4)%、(51.0±2.3)%,组间差异无统计学意义(F=0.831,P=0.492)。采用5 000.0 nmol/L PTX和10.0 μmol/L BIC以不同的序贯方式联合给药处理MDA-MB-231细胞(PTX 24 h +BIC 24 h组、BIC 24 h +PTX 24 h组、PTX 48 h +BIC 24 h组、BIC 48 h+PTX 24 h组),并用5 000.0 nmol/L PTX(PTX 48 h组)和10.0 μmol/L BIC(BIC 48 h组)单药处理及同时联合给药(PTX 48 h+ BIC 48 h组)分别处理MDA-MB-231细胞后,各组间细胞增殖抑制率差异有统计学意义(F=241.466,P<0.001)。其中,两两比较结果显示,PTX 24 h +BIC 24 h组细胞增殖抑制率为(72.9±1.9)%,高于BIC 24 h +PTX 24 h组的(42.9±1.7)%(P<0.001),PTX 48 h组的(60.9±3.7)%(P<0.001)和PTX 48 h +BIC 48 h组的(60.3±4.1)%(P<0.001)。PTX处理组中有EGR1、FST、FOS、IL8、IL6、RPL27A及CA2 7个基因的表达量与DMSO处理组比较,差异均有统计学意义(t=18.647、10.336、10.098、9.683、9.408、9.050、8.001,P均<0.050)。

结论

通过先PTX再BIC的序贯联合给药方式较单药及其他联合给药方式能够更有效抑制AR阳性三阴性乳腺癌细胞MDA-MB-231的增殖,两者间可能存在协同作用。

Objective

To investigate the inhibitory effect of bicalutamide (BIC) combined with paclitaxel (PTX) on the proliferation of androgen receptor (AR) -positive triple negative breast cancer MDA-MB-231 cells and its possible mechanism.

Methods

The CCK-8 kit was used to determine the effect of BIC (0.1, 1.0, 10.0 μmol/L) and PTX at different concentrations (0.1, 1.0, 10.0, 100.0, 1000.0, 10 000.0 nmol/L)in monotherapy or in sequential combination of both on the proliferation of MDA-MB-231 cells. Inhibition rate was compared using one-way analysis of variance. The pairwise comparison was performed using the LSD method. MDA-MB-231 cells were treated with 10 nmol/L PTX and 10 nmol/L DMSO respectively for 72 h. Three cell samples were taken in each group to analyze the relevant gene expression profiling in array using a bioinformatic method. The adjusted t test was used to screen out differential genes.

Results

After MDA-MB-231 cells were treated with different concentrations of BIC for 24, 48 and 72 h, respectively, the inhibition rates of MDA-MB-231 cells were statistically different at different time points (F=4.124, 8.189, 4.139, P=0.037, 0.004, 0.032). The inhibition rate of MDA-MB-231 cells reached the highest [(12.9 ± 5.5)%] at 48 h after the treatment of 10.0 μmol/L BIC. The inhibition rates of MDA-MB-231 cells were significantly different at different time points (F=8.407, 47.432, 14.907, P<0.001) after the treatment of PTX at different concentrations. The half inhibitory concentration (IC50) of PTX in MDA-MB-231 cells at 48 h was 5 380.0 nmol/L. After 48 h treatment of 5 000.0 nmol/L PTX alone or combined with 0.1, 1.0, 10.0 μmol/L BIC, the inhibition rate of MDA-MB-231 cells was (53.2 ± 2.7)%, (53.2 ± 3.1)%, (51.7 ± 3.4)%, (51.0 ± 2.3)% in PTX monotherapy group and three experimental groups, respectively, indicating no significant difference (F=0.831, P=0.492). MDA-MB-231 cells were treated with sequential combination of 5 000.0 nmol/L PTX and 10.0 μmol/L BIC (PTX 24 h+ BIC 24 h group, BIC 24 h+ PTX 24 h group, PTX 48 h+ BIC 24 h group, BIC 48h+ PTX 24 h group), the monotherapy with 5 000.0 nmol/L PTX (PTX 48 h group) or 10.0 μmo/L BIC (BIC 48 h group) and the synchronous combined therapy of PTX and BIC(PTX 48 h+ BIC 48 h group), respectively. The result showed that there was a statistically significant difference in inhibition rate (F=241.466, P<0.001). The result of pairwise comparison showed that the inhibition rate in PTX 24 h + BIC 24 h group was (72.9 ± 1.9)%, significantly higher than (42.9 ± 1.7)% in BIC 24 h + PTX 24 h group (P<0.001), (60.9 ± 3.7)% in PTX 48 h group(P<0.001) and (60.3 ± 4.1)% in PTX 48 h + BIC 48 h group (P<0.001). There was a significant difference in the expression of seven genes (EGR1, FST, FOS, IL8, IL6, RPL27A and CA2) between PTX-treated group and DMSO-treated group (t=18.647, 10.336, 10.098, 9.683, 9.408, 9.050, 8.001, all P<0.050)

Conclusions

Sequential administration of PTX and BIC can inhibit the proliferation of AR-positive triple negative breast cancer MDA-MB-231 cells more effectively compared with the monotherapy and other combination methods. The two drugs may have the synergistic effect.

表1 不同浓度比卡鲁胺作用不同时间后各组MDA-MB-231细胞增殖抑制率比较(%,±s)
表2 不同浓度紫杉醇作用不同时间后各组MDA-MB-231细胞增殖抑制率比较(%,±s)
表3 比卡鲁胺与紫杉醇不同给药方式处理后MDA-MB-231细胞增殖抑制率比较(%,±s)
图1 7个差异基因在紫杉醇和DMSO处理后的MDA-MB-231细胞中的表达量热图
表4 紫杉醇和DMSO处理后MDA-MB-231细胞中差异基因表达比较(±s)
[1]
Cochrane DR, Bernales S, Jacobsen BM, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide[J]. Breast Cancer Res, 2014, 16(1): R7.
[2]
Gucalp A, Tolaney S, Isakoff SJ, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer[J]. Clin Cancer Res, 2013, 19(19): 5505-5512.
[3]
Traina TA, Miller K, Yardley DA, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J]. J Clin Oncol, 2018, 36(9): 884-889.
[4]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7): 2750-2767.
[5]
Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes[J]. Cancer Cell, 2006, 10(6): 515-527.
[6]
赵晶,付丽.乳腺癌的分子分型[J/CD].中华乳腺病杂志(电子版), 2009, 3(2):35-40
[7]
Lasham A, Mehta SY, Fitzgerald SJ, et al. YB-1 affects response to paclitaxel in TNBCs by modulation of EGR1[EB/OL].[2017-09-02].

URL    
[8]
Celis J, Gromova I, Gromov P, et al. Molecular pathology of breast apocrine carcinomas: A protein expression signature specific for benign apocrine metaplasia[J]. FEBS Lett, 2006, 580(12): 2935-2944.
[9]
Nguyen PL, Taghian AG, Katz MS, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy[J]. J Clin Oncol, 2008, 26(14): 2373-2378.
[10]
Haffty BG, Yang Q, Reiss M, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer[J]. J Clin Oncol, 2006, 24(36): 5652-5657.
[11]
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence[J]. Clin Cancer Res, 2007, 13(15): 4429-4434.
[12]
Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer[J]. J Clin Oncol, 2008, 26(8): 1275-1281.
[13]
Choi JE, Kang SH, Lee SJ, et al. Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer[J]. Ann Surg Oncol, 2015, 22(1): 82-89.
[14]
Isola JJ. Immunohistochemical demonstration of androgen receptor in breast cancer and its relationship to other prognostic factors [J]. J Pathol, 1993, 170(1): 31-35.
[15]
Seitz S, Buchholz S, Schally AV, et al. Triple negative breast cancers express receptors for LHRH and are potential therapeutic targets for cytotoxic LHRH-analogs, AEZS 108 and AEZS 125[J]. BMC Cancer, 2014, 14(1): 847.
[16]
Traina TA, Yardley DA, Schwartzberg LS, et al. Overall survival (OS) in patients (Pts) with diagnostic positive (Dx+) breast cancer: Subgroup analysis from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in AR+ triple-negative breast cancer (TNBC) treated with 0-1 prior lines of therapy[EB/OL]. [2017-10-20].

URL    
[17]
Wang S, Xu F, Ouyang Q, et al. Fulvestrant as maintenance therapy after first-line chemotherapy in postmenopausal hormone receptor-positive, HER2-negative advanced breast cancer patients (FANCY): A prospective, multicenter, single arm phase II study[EB/OL]. [2017-10-20].

URL    
[18]
Lee KH, Kim JR. Hepatocyte growth factor induced up-regulations of VEGF through Egr-1 in hepatocellular carcinoma cells[J]. Clin Exp Metastasis, 2009, 26(7): 685-692.
[19]
Abdulkadir SA, Qu Z, Garabedian E, et al. Impaired prostate tumorigenesis in Egr1-deficient mice [J]. Nat Med, 2001, 7(1): 101-107.
[20]
Yang SZ, Abdulkadir SA. Early growth response gene 1 modulates androgen receptor signaling in prostate carcinoma cells[J]. J Biol Chem, 2003, 278(41): 39 906-39 911.
[21]
Tao W, Shi JF, Zhang Q, et al. Egr-1 enhances drug resistance of breast cancer by modulating MDR1 expression in a GGPPS-independent manner[J]. Biomed Pharmacother, 2013, 67(3): 197-202.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 高俊颖, 张海洲, 区泓乐, 孙强. FOLFOX-HAIC 为基础的肝细胞癌辅助转化治疗的应用进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 457-463.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要