切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 4 -11. doi: 10.3877/cma.j.issn.1674-0807.2018.01.002

所属专题: 文献

专家论坛

免疫组织化学染色在乳腺癌分子分型中的应用
Ping Tang,1, 魏兵2   
  1. 1. Department of Pathology, Loyola University Medical Center, 2160 South, First Avenue, Maywood, IL 60153, USA
    2. 610041 成都,四川大学华西医院病理科
  • 收稿日期:2017-05-22 出版日期:2018-02-01
  • 通信作者: Ping Tang

Immunohistochemical staining for molecular classification of breast cancer

Ping Tang,1, Bing Wei2   

  1. 1. Department of Pathology, Loyola University Medical Center, 2160 South, First Avenue, Maywood, IL 60153, USA
    2. Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
  • Received:2017-05-22 Published:2018-02-01
  • Corresponding author: Ping Tang
  • About author:
    Corresponding author: Ping Tang, Email:
引用本文:

Ping Tang, 魏兵. 免疫组织化学染色在乳腺癌分子分型中的应用[J/OL]. 中华乳腺病杂志(电子版), 2018, 12(01): 4-11.

Ping Tang, Bing Wei. Immunohistochemical staining for molecular classification of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(01): 4-11.

基因表达谱研究将浸润性乳腺癌划分为5个内源性亚型:luminal A型、luminal B型、正常乳腺样型、HER-2过表达型和基底细胞样型。各亚型的发病率、预后和治疗反应性各不相同。免疫组织化学染色可以替代基因表达谱将乳腺癌划分为luminal型、HER-2亚型和三阴性亚型,最常使用的标志物是ER、PR和HER-2。通过Ki67、CK5和表皮生长因子受体(EGFR)可以区分luminal A型和luminal B型乳腺癌及区分基底细胞样型乳腺癌和不能分类的三阴性乳腺癌。近期研究使用如雄激素受体、p53等标志物可以对乳腺癌进行分子亚型分层。尽管基于免疫组织化学染色的分子分型具有临床意义,其分型结果也类似于基因表达谱确定的乳腺癌分子分型,但该类分型也存在较大的局限性:(1)缺乏各亚型名称的标准化;(2)缺乏各亚型定义的统一标准;(3)缺乏各免疫标志物统一的阳性界值。通过对相关英文文献的评读,笔者提出了一组简单、易行的基于免疫组织化学染色的乳腺癌分子分型,包括ER阳性乳腺癌、HER-2阳性乳腺癌和三阴性乳腺癌及其亚型。

Five intrinsic subtypes of invasive breast cancers have been identified by gene expression profiling: luminal A, luminal B, normal breast-like, HER-2-overexpressing and basal-like subtypes. The different subtypes present the different incidence, prognosis and response to therapy. Immunohistochemical staining has been used as the surrogates for gene expression profiling to divide breast cancer into luminal, HER-2 and triple-negative subtypes. ER, PR and HER-2 are the most commonly used immunohistochemical markers. Ki67, CK5 and epidermal growth factor receptor (EGFR) are useful in distinguishing luminal A from luminal B subtype and distinguishing basal-like subtype from unclassified triple-negative breast cancer. More recently, biomarkers such as androgen receptor (AR) and p53 have been shown to further stratify these molecular subtypes. Although immunohistochemistry-based molecular classification has displayed clinical significance similar to gene expression profiling-defined molecular classification, it has the following limitations: a lack of standardization in nomenclature, a lack of standardized definitions for different subtypes and no standardized cutoff value for each biomarker. With reviewing recent English language literature, a panel of immunohistochemistry-based molecular subtypes is proposed, including ER positive breast cancer, HER-2 positive breast cancer, triple-negative breast cancer and their subgroups.

表1 基于免疫组织化学染色的乳腺癌分子分型
[1]
Zardavas D, Irrthum A, Swanton C, et al. Clinical management of breast cancer heterogeneity[J]. Nat Rev Clin Oncol, 2015, 12(7): 381-394.
[2]
Lakhani SR, Ellis IO, Schnitt SJ, et al. World Health Organization classification of tumours of the breast[M]. Lyon: IARC Press, 2012.
[3]
Perou CM, Srlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752.
[4]
Srlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. Proc Natl Acad Sci U S A, 2001, 98(19): 10 869-10 874.
[5]
Anderson WF, Rosenberg PS, Prat A, et al. How many etiological subtypes of breast cancer: two, three, four, or more?[J]. J Natl Cancer Inst, 2014, 106(8): dju165.
[6]
朱坤兵,徐灿,李晓霞,等. 乳腺癌分子分型与新辅助化疗效果的关系[J/CD]. 中华乳腺病杂志(电子版), 2016,10(3):166-169.
[7]
Vera-Badillo FE, Templeton AJ, de Gouveia P, et al. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis[J]. J Natl Cancer Inst, 2014, 106(1): djt319.
[8]
Dvorkin-Gheva A, Hassell JA. Identification of a novel luminal molecular subtype of breast cancer[J]. PLoS One, 2014, 9(7): e103514.
[9]
Maisonneuve P, Disalvatore D, Rotmensz N, et al. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes[J]. Breast Cancer Res, 2014, 16(3): R65.
[10]
Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013 [J]. Ann Oncol, 2013, 24(9): 2206-2223.
[11]
Rakha EA, Soria D, Green AR, et al. Nottingham Prognostic Index Plus (NPI+): a modern clinical decision making tool in breast cancer[J]. Br J Cancer, 2014, 110(7): 1688-1697.
[12]
Qi JP, Yang YL, Zhu H, et al. Expression of the androgen receptor and its correlation with molecular subtypes in 980 Chinese breast cancer patients [J]. Breast Cancer (Auckl), 2012, 6(1): 1-8.
[13]
Zhang Z, Wang J, Tacha DE, et al. Folate receptor α associated with triple-negative breast cancer and poor prognosis [J]. Arch Pathol Lab Med, 2014, 138(7): 890-895.
[14]
Hammond ME, Hayes DF, Dowestt M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version) [J]. Arch Pathol Lab Med, 2010, 134(7): e48-e72.
[15]
Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update [J]. J Clin Oncol, 2013, 31(31): 3997-4013.
[16]
Dowsett M, Nielsen TO, A'Hern R, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group [J]. J Natl Cancer Inst, 2011, 103(22): 1656-1664.
[17]
Polley MY, Leung SC, Gao D, et al. An international study to increase concordance in Ki67 scoring[J]. Mod Pathol, 2015, 28(6): 778-786.
[18]
De Azarmbuja E, Cardosi F, de Castro G, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12, 155 patients[J]. Br J Cancer, 2007, 96(10): 1504-1513.
[19]
Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtyped of dealing with the diversity of breast cancer-highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2011[J]. Ann Oncol, 2011, 22(8): 1736-1747.
[20]
Coates AS, Winer EP, Goldhirsch A, et al. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015 [J]. Ann Oncol, 2015, 26(8): 1533-1546.
[21]
Curigliano G, Burstein HJ, Winer E, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017[J]. Ann Oncol, 2017, 28(8): 1700-1712.
[22]
Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma[J]. Clin Cancer Res, 2004, 10(16): 5367-5374.
[23]
邓淼,刘江波,刘起鹏,等. CK5/6和Ki67表达与乳腺癌分子病理特征关系的临床分析[J/CD]. 中华乳腺病杂志(电子版), 2015,9(6):380-386.
[24]
Overgaard J, Yilmaz M, Gulberg P, et al. TP53 is an independent prognostic marker for poor outcome in both node-negative and node-positive breast cancer[J]. Acta Oncol, 2000, 39(9): 327-333.
[25]
Rozan S, Vincent-Salomon A, Zafrani B, et al. No significant predictive value of C-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer[J]. Int J Cancer, 1998, 79(1): 27-33.
[26]
Gatza ML, Silva GO, Parker JS, et al. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer[J]. Nat Genet, 2014, 46(10): 1051-1059.
[27]
Hallett RM, Hassell JA. Estrogen independent gene expression defines clinically relevant subgroups of estrogen receptor positive breast cancer[J]. BMC Cancer, 2014, 14: 871.
[28]
Jiang YZ, Yu KD, Zuo WJ, et al. GATA3 mutations define a unique subtype of luminal-like breast cancer with improved survival[J]. Cancer, 2014, 120(9): 1329-1337.
[29]
Cheang MC, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer[J]. J Natl Cancer Inst, 2009, 101(10): 736-750.
[30]
Prat A, Cheang MC, Martin M, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer[J]. J Clin Oncol, 2013, 31(2): 203-209.
[31]
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors[J]. Nature, 2012, 490(7418): 61-70.
[32]
Ades F, Zardavas D, Bozovic-Spasojevic I, et al. Luminal B breast cancer: molecular characterization, clinical management, and future perspectives[J]. J Clin Oncol, 2014, 32(25): 2794-2803.
[33]
Cancello G, Maisonneuve P, Rotmansz N, et al. Progesterone receptor loss identifies luminal B breast cancer subgroups at higher risk of relapse[J]. Ann Oncol, 2013, 24(3): 661-668.
[34]
Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with Genomic Health recurrence score in early breast cancer[J]. J Clin Oncol, 2011, 29(32): 4273-4278.
[35]
Klein ME, Dabbs DJ, Shuai Y, et al. Prediction of the Oncotype DX recurrence score: use of pathology-generated equations derived by linear regression analysis[J]. Mod Pathol, 2013, 26(5): 658-664.
[36]
Zong Y, Zhu L, Wu J, et al. Progesterone receptor status and Ki-67 index may predict early relapse in luminal B/HER2 negative breast cancer patients: a retrospective study[J]. PLoS One, 2014, 9(8): e95629.
[37]
Green AR, Barros FF, Abdel-Fatah TM, et al. HER2/HER3 heterodimers and p21 expression are capable of predicting adjuvant trastuzumab response in HER2+ breast cancer[J]. Breast Cancer Res Treat, 2014, 145(1): 33-44.
[38]
Fountzilas G, Dafni U, Bobos M, et al. Differential response of immunohistochemically defined breast cancer subtypes to anthracycline-based adjuvant chemotherapy with or without paclitaxel[J]. PLoS One, 2012, 7(6): e34946.
[39]
Wu VS, Kanaya N, Lo C, et al. From bench to bedside: what do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer[J]. J Steroid Biochem Mol Biol, 2015, 153: 45-53.
[40]
Kneubil MC, Brollo J, Botteri E, et al. Breast cancer subtype approximations and loco-regional recurrence after immediate breast reconstruction[J]. Eur J Surg Oncol, 2013, 39(3): 260-265.
[41]
Alqaisi A, Chen L, Romond E, et al. Impact of estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) co-expression on breast cancer disease characteristics: implications for tumor biology and research[J]. Breast Cancer Res Treat, 2014, 148(2): 437-444.
[42]
Parise CA, Caggiano C. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers[J]. J Cancer Epidermiol, 2014, 2014: 469 251.
[43]
Staaf J, Ringner M, Vallon-CHristersson J, et al. Identification of subtypes in human epidermal growth factor receptor 2-positive breast cancer reveals a gene signature prognostic of outcome[J]. J Clin Oncol, 2010, 28(11): 1813-1820.
[44]
Badve S, Dabbs DJ, Schnitt SJ, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologist and oncologists[J]. Mod Pathol, 2011, 24(2): 157-167.
[45]
Geyer FC, Pareja F, Weigelt B, et al. The spectrum of triple-negative breast disease: high- and low-grade lesions[J]. Am J Pathol, 2017, 187(10): 2139-2151.
[46]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triplenegative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7): 2750-2767.
[47]
Masuda H, Baggerly KA, Wang Y, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes[J]. Clin Cancer Res, 2013, 19(19): 5533-5540.
[48]
Rakha EA, Elsheikh SE, Aleskandarany MA, et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes[J]. Clin Cancer Res, 2009, 15(7): 2302-2310.
[49]
Lehmann-Che J, Harny AS, Porcher R, et al. Molecular apocrine breast cancer are aggressive estrogen receptor negative tumors over-expression either HER2 or GCDFP15[J]. Breast Cancer Res, 2013, 15(3): R37.
[50]
Lu S, Singh K, Mangray S, et al. Claudin expression in high grade invasive ductal carcinoma of the breast: correlation with the molecular subtype[J]. Mod Pathol, 2013, 26(4): 485-495.
[51]
Sabatier R, Finetti P, Guille A, et al. Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization[J]. Mol Cancer, 2014, 13: 228.
[52]
Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes[J]. J Clin Oncol, 2009, 27(8): 1160-1167.
[53]
Weigelt B, Mackay A, A'hern R, et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis[J]. Lancet Oncol, 2010, 11(4): 339-349.
[54]
Cheang MC, Martin M, Nielsen TO, et al. Defining breast cancer intrinsic subtypes by quantitative receptor expression[J]. Oncologist, 2015, 20(5): 474-482.
[55]
Prat A, Carey L, Adamo B, et al. Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer[J]. J Natl Cancer Inst, 2014, 106(8). pii: dju152.
[56]
Zhang Z, Wang J, Skinner KA, et al. Pathological features and clinical outcomes of breast cancer according to levels of oestrogen receptor expression [J]. Histopathology, 2014, 65(4): 508-516.
[57]
Knox AJ, Scaling AL, Pinto MP, et al. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease[J]. Breast Cancer Res, 2014, 16(4): 418-430.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[15] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
阅读次数
全文
1
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 0 0 0 1

  来源 其他网站
  次数 1
  比例 100%

摘要
51
最新录用 在线预览 正式出版
0 0 51
  来源 本网站 其他网站
  次数 23 28
  比例 45% 55%