切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (04) : 234 -237. doi: 10.3877/cma.j.issn.1674-0807.2017.04.009

综述

程序性死亡配体1 在三阴性乳腺癌中的研究进展
黄晓嘉1, 唐海林1, 谢小明1,()   
  1. 1.510060 广州,中山大学肿瘤防治中心乳腺科
  • 收稿日期:2016-03-08 出版日期:2017-08-01
  • 通信作者: 谢小明
  • 基金资助:
    国家自然科学基金面上项目(81472575,81472469)

Research progress of programmed death ligand 1 in triple-negative breast cancer

Xiaojia Huang, Hailin Tang, Xiaoming Xie()   

  • Received:2016-03-08 Published:2017-08-01
  • Corresponding author: Xiaoming Xie
引用本文:

黄晓嘉, 唐海林, 谢小明. 程序性死亡配体1 在三阴性乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2017, 11(04): 234-237.

Xiaojia Huang, Hailin Tang, Xiaoming Xie. Research progress of programmed death ligand 1 in triple-negative breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2017, 11(04): 234-237.

乳腺癌是女性常见的恶性肿瘤,三阴性乳腺癌(TNBC)侵袭性强,转移率高,预后差。 程序性死亡配体1(PDL1)在介导肿瘤细胞免疫逃逸中起着重要作用,其在TNBC 中的研究也不断深入。 笔者对TNBC 中PDL1 的表达、调控、治疗等方面的研究进展作一综述,以期为TNBC 的治疗提供新的思路。

图1 PDL1 的调控示意图 注: PTEN 是指人第10 号染色体缺失的磷酸酶及张力蛋白同源的基因;PI3K 是指磷脂酰肌醇-3 激酶;Akt 是指蛋白激酶B;mTOR 是指哺乳动物雷帕霉素靶蛋白;PDL1 是指程序性死亡配体1;PD1 是指程序性死亡因子1;IFN-α/β/γ 是指干扰素α/β/γ;TNFα 是指肿瘤坏死因子α;IL-2/17 是指白介素2/17;MAPK 是指丝裂原活化蛋白激酶;MEK1/2 是指丝裂原活化蛋白激酶激酶1/2;ERK1/2 是指细胞外调节蛋白激酶1/2;c-Jun 是指原癌基因c-Jun;NPM 是指核仁磷酸蛋白;ALK 是指间变性淋巴瘤激酶;STAT3 是指信号传导与转录激活因子3
表1 PDL1 在乳腺癌中的表达情况
表2 与PDL1/PD1 单克隆抗体相关的三阴性乳腺癌临床试验
[1]
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion[J]. Science,2011,331(6024):1565-1570.
[2]
Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy[J]. Science,2013,342(6165):1432-1433.
[3]
张立煌, 王青青. 恶性肿瘤免疫治疗的现状及展望[J]. 浙江大学学报(医学版),2010,39(4):339-344.
[4]
Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets[J]. Nat Rev Drug Discov,2015,14(8):561-584.
[5]
Ribas A. Tumor immunotherapy directed at PD-1[J]. N Engl J Med,2012,366(26):2517-2519.
[6]
Hasan A, Ghebeh H,Lehe C,et al. Therapeutic targeting of B7-H1 in breast cancer [J]. Expert Opin Ther Targets, 2011, 15 (10):1211-1225.
[7]
Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3-potential mechanisms of action[J]. Nat Rev Immunol,2015,15(1):45-56.
[8]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med,2012,366(26):2443-2454.
[9]
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med,2012,366(26):2455-2465.
[10]
Reiss KA, Forde PM, Brahmer JR. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy[J]. Immunotherapy,2014,6(4):459-475.
[11]
Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1)treatment leads to clinical activity in metastatic bladder cancer[J].Nature,2014,515(7528):558-562.
[12]
Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy[J]. Clin Cancer Res, 2014, 20(19):5064-5074.
[13]
Garon EB,Rizvi NA,Hui R,et al. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(21):2018-2028.
[14]
Ilie M, Long-Mira E, Bence C, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies[J]. Ann Oncol,2016,27(1):147-153.
[15]
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med,2012,366(10):883-892.
[16]
McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer[J]. JAMA Oncol,2016,2(1):46-54.
[17]
Ilie M, Hofman V, Dietel M,et al. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients[J]. Virchows Arch,2016.
[18]
Schalper KA, Velcheti V, Carvajal D, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas [J]. Clin Cancer Res, 2014, 20 (10):2773-2782.
[19]
Mazel M, Jacot W, Pantel K, et al. Frequent expression of PD-L1 on circulating breast cancer cells [J]. Mol Oncol, 2015, 9 (9):1773-1782.
[20]
Marzec M, Zhang Q, Goradia A, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274(PD-L1, B7-H1)[J]. Proc Natl Acad Sci U S A, 2008, 105(52):20 852-20 857.
[21]
Crane CA, Panner A, Murray JC, et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer[J]. Oncogene,2009,28(2):306-312.
[22]
Jiang X, Zhou J, Giobbie-Hurder A, et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition[J]. Clin Cancer Res,2013,19(3):598-609.
[23]
Ghebeh H, Lehe C,Barhoush E,et al. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule[J].Breast Cancer Res,2010,12(4): R48.
[24]
Peng J, Hamanishi J, Matsumura N, et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factorkappaB to foster an immunosuppressive tumor microenvironment in ovarian cancer[J]. Cancer Res,2015,75(23):5034-5045.
[25]
Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature,2015,520(7547):373-377.
[26]
Beckers RK, Selinger CI, Vilain R, et al. PDL1 expression in triplenegative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome[J]. Histopathology,2015,48: S146-S147.
[27]
Mittendorf EA, Philips AV, Meric-Bernstam F, et al. PD-L1 expression in triple-negative breast cancer[J]. Cancer Immunol Res,2014,2(4):361-370.
[28]
Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type[J]. Cancer Epidemiol Biomarkers Prev,2014,23(12):2965-2970.
[29]
Bertucci F, Finetti P, Colpaert C, et al. PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy [ J]. Oncotarget, 2015, 6 ( 15 ):13 506-13 519.
[30]
Sabatier R, Finetti P, Mamessier E, et al. Prognostic and predictive value of PDL1 expression in breast cancer[J]. Oncotarget, 2015,6(7):5449-5464.
[31]
Muenst S, Schaerli AR,Gao F,et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer[J]. Breast Cancer Res Treat,2014,146(1):15-24.
[32]
Muenst S, Soysal SD,Gao F,et al. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer[J]. Breast Cancer Res Treat,2013,139(3):667-676.
[33]
Sun S, Fei X, Mao Y, et al. PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients[J].Cancer Immunol Immunother,2014,63(4):395-406.
[34]
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature,2014,515(7528):563-567.
[35]
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature,2014,515(7528):568-571.
[36]
Gibson J. Anti-PD-L1 for metastatic triple-negative breast cancer[J].Lancet Oncol,2015,16(6): e264.
[37]
Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients[J]. Clin Cancer Res,2013,19(19):5300-5309.
[38]
Kerr KM, Hirsch FR. Programmed death ligand-1 immunohistochemistry:friend or foe? [J]. Arch Pathol Lab Med,2016,140(4):326-331.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[12] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[13] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[14] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[15] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
阅读次数
全文


摘要