切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (03) : 186 -190. doi: 10.3877/cma.j.issn.1674-0807.2017.03.014

综述

乳腺癌常用化疗药物的作用机制及血液学不良反应的研究进展
李明卉1, 夏添松1, 王水1,   
  1. 1.210036 南京医科大学第一附属医院乳腺病科
  • 收稿日期:2016-08-10 出版日期:2017-06-01
  • 通信作者: 王水

Mechanism of action and hematological toxicity of chemotherapy drugs commonly used in breast cancer

Minghui Li, Tiansong Xia, Shui Wang   

  • Received:2016-08-10 Published:2017-06-01
  • Corresponding author: Shui Wang
引用本文:

李明卉, 夏添松, 王水. 乳腺癌常用化疗药物的作用机制及血液学不良反应的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2017, 11(03): 186-190.

Minghui Li, Tiansong Xia, Shui Wang. Mechanism of action and hematological toxicity of chemotherapy drugs commonly used in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2017, 11(03): 186-190.

随着中国女性乳腺癌发病率的升高,辅助化疗广泛应用于乳腺癌患者,其产生的不良反应日益突出,尤其是血液学不良反应造成的骨髓抑制。 在接受同样方案的化疗后,不同患者出现血液学不良反应的风险和程度存在明显差异,其原因尚未完全阐明。 目前,有多项研究从遗传角度进行探索,部分药物代谢酶、转运蛋白、受体等的基因多态性被证实与个体不良反应差异有关。 笔者从乳腺癌化疗药物的作用机制出发,就乳腺癌化疗的血液学不良反应与药物遗传学的相关性研究进展作一综述。

表1 影响血液学不良反应的候选基因
化疗药物 突变基因 影响
蒽环类 SOD2 rs4880 T>C 血液学不良反应减小,DFS下降
多柔比星 CBR3 11G>A 血液学不良反应增大,肿瘤缩小更明显
AKR1C3 IVS4-212 C>G 血液学不良反应增大,OS增高
ABCB1 2677G>T/A 血小板毒性增大
SLC22A16 A146G,T312C,T755C 血液学不良反应减小
SLC22A16 T1226C 血液学不良反应增大,OS无影响
表柔比星 ABCC1/MRP1 rs4148350 G>T 血液学不良反应增大
ABCC1/MRP1 rs45511401 G>T 血液学不良反应增大
ABCC1/MRP1 rs246221 T>C 血液学不良反应增大
UGT2B7 rs7668282 T>C 血液学不良反应增大
紫杉醇 ABCB1 2677G>T/A,3435C>T 血液学不良反应增大
多西紫杉醇 ABCB1 1236C>T 药物清除率降低,血液学不良反应可能增大
ABCC2 rs12762549 血液学不良反应增大
SLCO1B3 rs11045585 血液学不良反应增大
CYP3A4*1B,CYP3A5*1A 药物清除率增加,血液学不良反应可能减少
环磷酰胺 CYP2B6*2(C64T) 血液学不良反应增大,TTP缩短,OS无影响
CYP2B6*5(C1459T) 血液学不良反应增大,PFS可能升高
CYP2B6 g.-2320 T>C 血液学不良反应增大
CYP2B6 g.-750 T>C 血液学不良反应增大
CYP2B6 g.18492 T>C 血液学不良反应增大
GSTP1 rs1695 A>G 血液学不良反应减小,DFS无影响(研究结果不一致)
ALDH1A1rs3764435-rs168351 A-A 血液学不良反应增大
卡培他滨 DPYD c.1679T>G 血液学不良反应增大
DPYD c.2846A>T 血液学不良反应增大
DPYD IVS14+1G>A 血液学不良反应增大
DPYD c.1129-5923 C>G 血液学不良反应增大
TS 3RG 血液学不良反应增大,TTP缩短
吉西他滨 RRM1 2455 A>G,2464 G>A 血液学不良反应减小,OS下降
CDA 79 A>C 血液学不良反应增大
CDA 208 G>A 血液学不良反应增大
[1]
Mcguire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer,WHO Press,2015 [J]. Adv Nutr,2016,7(2):418-419.
[2]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132.
[3]
Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Peto R, Davies C, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials[J]. Lancet, 2012,379(9814):432-444.
[4]
Trotti A,Colevas AD,Setser A,et al. CTCAE v3.0:development of a comprehensive grading system for the adverse effects of cancer treatment [J]. Semin Radiat Oncol,2003,13(3):176-181.
[5]
Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J]. Pharmacol Rev,2004,56(2):185-229.
[6]
Costantini P, Jacotot E, Decaudin D, et al. Mitochondrion as a novel target of anticancer chemotherapy[J]. J Natl Cancer Inst,2000,92(13):1042-1053.
[7]
Yao S, Barlow WE, Albain KS, et al. Manganese superoxide dismutase polymorphism, treatment-related toxicity and disease-free survival in SWOG 8897 clinical trial for breast cancer[J]. Breast Cancer Res Treat,2010,124(2):433-439.
[8]
Fan L, Goh BC, Wong CI, et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity[J]. Pharmacogenet Genomics,2008,18(7):621-631.
[9]
Choi JY, Barlow WE, Albain KS, et al. Nitric oxide synthase variants and disease-free survival among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial [J]. Clin Cancer Res,2009,15(16):5258-5266.
[10]
Voon PJ, Yap HL, Ma CY, et al. Correlation of aldo-ketoreductase(AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients [J]. Br J Clin Pharmacol,2013,75(6):1497-1505.
[11]
Bray J, Sludden J, Griffin MJ, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide [J]. Br J Cancer,2010,102(6):1003-1009.
[12]
Vulsteke C, Lambrechts D, Dieudonné A, et al. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) [J]. Ann Oncol, 2013, 24(6):1513-1525.
[13]
Cresteil T, Monsarrat B, Dubois J, et al. Regioselective metabolism of taxoids by human CYP3A4 and 2C8: structure-activity relationship[J]. Drug Metab Dispos,2002,30(4):438-445.
[14]
Sissung TM, Mross K, Steinberg SM, et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia [J]. Eur J Cancer,2006,42(17):2893-2896.
[15]
Chang H, Rha SY, Jeung HC, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C >T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. [J]. Ann Oncol,2009,20(2):272-277.
[16]
Henningsson A, Marsh S, Loos WJ, et al. Association of CYP2C8,CYP3A4,CYP3A5,and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel [J]. Clin Cancer Res,2005,11(22):8097-8104.
[17]
Baker SD, Li J, ten Tije AJ, et al. Relationship of systemic exposure to unbound docetaxel and neutropenia [J]. Clin Pharmacol Ther,2005,77(1):43-53.
[18]
Bosch TM, Huitema AD, Doodeman VD, et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel [J]. Clin Cancer Res,2006,12(19):5786-5793.
[19]
Kiyotani K, Mushiroda T, Kubo M, et al. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia[J]. Cancer Sci,2008,99(5):967-972.
[20]
Baker SD, Verweij J, Cusatis GA, et al. Pharmacogenetic pathway analysis of docetaxel elimination[J]. Clin Pharmacol Ther, 2009, 85(2):155-163.
[21]
Yu LJ, Drewes P, Gustafsson K, et al. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism:impact on pharmacokinetics and antitumor activity [J]. J Pharmacol Exp Ther,1999,288(3):928-937.
[22]
Nakajima M, Komagata S, Fujiki Y, et al. Genetic polymorphisms of CYP2B6affectthepharmacokinetics/pharmacodynamicsof cyclophosphamide in Japanese cancer patients. [J]. Pharmacogenet Genomics,2007,17(6):431-445.
[23]
Yao S, Barlow WE, Albain KS, et al. Gene polymorphisms in cyclophosphamide metabolism pathway, treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer[J]. Clin Cancer Res,2010,16(24):6169-6176.
[24]
Zárate R, González-Santigo S, de la Haba J, et al. GSTP1 and MTHFR polymorphisms are related with toxicity in breast cancer adjuvant anthracycline-based treatment [J]. Curr Drug Metab, 2007,8(5):481-486.
[25]
Yao S, Sucheston LE, Zhao H, et al. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer [J]. Pharmacogenomics J,2014,14(3):241-247.
[26]
Mattison LK, Soong R, Diasio RB, et al. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics [J]. Pharmacogenomics,2002,3(4):485-492.
[27]
Milano G, McLeod HL. Can dihydropyrimidine dehydrogenase impact 5-fluorouracil-based treatment? [J]. Eur J Cancer,2000,36(1):37-42.
[28]
Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity[J]. Pharmacogenomics,2011,12(9):1321-1336.
[29]
Saif MW. Dihydropyrimidine dehydrogenase gene ( DPYD )polymorphism among Caucasian and non-Caucasian patients with 5-FUand capecitabine-related toxicity using full sequencing of DPYD [J].Cancer Genomics Proteomics,2013,10(2):89-92.
[30]
Largillier R,Etienne-Grimaldi MC,Formento JL,et al. Pharmacogenetics of capecitabine in advanced breast cancer patients [J]. Clin Cancer Res,2006,12(18):5496-5502.
[31]
Goan YG, Zhou B, Hu E, et al. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. [J]. Cancer Res, 1999, 59(17):4204-4207.
[32]
Jordheim LP, Sève P, Trédan O, et al. The ribonucleotide reductase large subunit (RRM1) as a predictive factor in patients with cancer[J]. Lancet Oncol,2011,12(7):693-702.
[33]
Rha SY, Jeung HC, Choi YH, et al. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients [J]. Oncologist,2007,12(6):622-630.
[34]
Chew HK, Doroshow JH, Frankel P, et al. Phase II studies of gemcitabine and cisplatin in heavily and minimally pretreated metastatic breast cancer [J]. J Clin Oncol, 2009, 27(13):2163-2169.
[35]
Yonemori K,Ueno H,Okusaka T,et al. Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus cisplatin [J].Clin Cancer Res,2005,11(7):2620-2624.
[36]
Sugiyama E, Kaniwa N, Kim SR, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism [J]. J Clin Oncol,2007,25(1):32-42.
[37]
Mercier C, Evrard A, Ciccolini J. Genotype-based methods for anticipating gemcitabine-related severe toxicities may lead to falsenegative results[ J]. J Clin Oncol,2007,25(30):4855-4856.
[1] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[2] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[3] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[4] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[5] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[6] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[7] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[8] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[9] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[10] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[11] 笪东祝, 林凯, 王小蕊, 王开银, 王敏, 王玮, 李瑾, 刘俊. 低促甲状腺激素水平结节性甲状腺肿的发生发展与促甲状腺激素受体基因D727E 多态性的相关性研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 443-446.
[12] 高俊颖, 张海洲, 区泓乐, 孙强. FOLFOX-HAIC 为基础的肝细胞癌辅助转化治疗的应用进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 457-463.
[13] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[14] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[15] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
阅读次数
全文


摘要