[1] |
Mcguire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer,WHO Press,2015 [J]. Adv Nutr,2016,7(2):418-419.
|
[2] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132.
|
[3] |
Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Peto R, Davies C, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials[J]. Lancet, 2012,379(9814):432-444.
|
[4] |
Trotti A,Colevas AD,Setser A,et al. CTCAE v3.0:development of a comprehensive grading system for the adverse effects of cancer treatment [J]. Semin Radiat Oncol,2003,13(3):176-181.
|
[5] |
Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J]. Pharmacol Rev,2004,56(2):185-229.
|
[6] |
Costantini P, Jacotot E, Decaudin D, et al. Mitochondrion as a novel target of anticancer chemotherapy[J]. J Natl Cancer Inst,2000,92(13):1042-1053.
|
[7] |
Yao S, Barlow WE, Albain KS, et al. Manganese superoxide dismutase polymorphism, treatment-related toxicity and disease-free survival in SWOG 8897 clinical trial for breast cancer[J]. Breast Cancer Res Treat,2010,124(2):433-439.
|
[8] |
Fan L, Goh BC, Wong CI, et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity[J]. Pharmacogenet Genomics,2008,18(7):621-631.
|
[9] |
Choi JY, Barlow WE, Albain KS, et al. Nitric oxide synthase variants and disease-free survival among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial [J]. Clin Cancer Res,2009,15(16):5258-5266.
|
[10] |
Voon PJ, Yap HL, Ma CY, et al. Correlation of aldo-ketoreductase(AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients [J]. Br J Clin Pharmacol,2013,75(6):1497-1505.
|
[11] |
Bray J, Sludden J, Griffin MJ, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide [J]. Br J Cancer,2010,102(6):1003-1009.
|
[12] |
Vulsteke C, Lambrechts D, Dieudonné A, et al. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) [J]. Ann Oncol, 2013, 24(6):1513-1525.
|
[13] |
Cresteil T, Monsarrat B, Dubois J, et al. Regioselective metabolism of taxoids by human CYP3A4 and 2C8: structure-activity relationship[J]. Drug Metab Dispos,2002,30(4):438-445.
|
[14] |
Sissung TM, Mross K, Steinberg SM, et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia [J]. Eur J Cancer,2006,42(17):2893-2896.
|
[15] |
Chang H, Rha SY, Jeung HC, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C >T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. [J]. Ann Oncol,2009,20(2):272-277.
|
[16] |
Henningsson A, Marsh S, Loos WJ, et al. Association of CYP2C8,CYP3A4,CYP3A5,and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel [J]. Clin Cancer Res,2005,11(22):8097-8104.
|
[17] |
Baker SD, Li J, ten Tije AJ, et al. Relationship of systemic exposure to unbound docetaxel and neutropenia [J]. Clin Pharmacol Ther,2005,77(1):43-53.
|
[18] |
Bosch TM, Huitema AD, Doodeman VD, et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel [J]. Clin Cancer Res,2006,12(19):5786-5793.
|
[19] |
Kiyotani K, Mushiroda T, Kubo M, et al. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia[J]. Cancer Sci,2008,99(5):967-972.
|
[20] |
Baker SD, Verweij J, Cusatis GA, et al. Pharmacogenetic pathway analysis of docetaxel elimination[J]. Clin Pharmacol Ther, 2009, 85(2):155-163.
|
[21] |
Yu LJ, Drewes P, Gustafsson K, et al. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism:impact on pharmacokinetics and antitumor activity [J]. J Pharmacol Exp Ther,1999,288(3):928-937.
|
[22] |
Nakajima M, Komagata S, Fujiki Y, et al. Genetic polymorphisms of CYP2B6affectthepharmacokinetics/pharmacodynamicsof cyclophosphamide in Japanese cancer patients. [J]. Pharmacogenet Genomics,2007,17(6):431-445.
|
[23] |
Yao S, Barlow WE, Albain KS, et al. Gene polymorphisms in cyclophosphamide metabolism pathway, treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer[J]. Clin Cancer Res,2010,16(24):6169-6176.
|
[24] |
Zárate R, González-Santigo S, de la Haba J, et al. GSTP1 and MTHFR polymorphisms are related with toxicity in breast cancer adjuvant anthracycline-based treatment [J]. Curr Drug Metab, 2007,8(5):481-486.
|
[25] |
Yao S, Sucheston LE, Zhao H, et al. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer [J]. Pharmacogenomics J,2014,14(3):241-247.
|
[26] |
Mattison LK, Soong R, Diasio RB, et al. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics [J]. Pharmacogenomics,2002,3(4):485-492.
|
[27] |
Milano G, McLeod HL. Can dihydropyrimidine dehydrogenase impact 5-fluorouracil-based treatment? [J]. Eur J Cancer,2000,36(1):37-42.
|
[28] |
Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity[J]. Pharmacogenomics,2011,12(9):1321-1336.
|
[29] |
Saif MW. Dihydropyrimidine dehydrogenase gene ( DPYD )polymorphism among Caucasian and non-Caucasian patients with 5-FUand capecitabine-related toxicity using full sequencing of DPYD [J].Cancer Genomics Proteomics,2013,10(2):89-92.
|
[30] |
Largillier R,Etienne-Grimaldi MC,Formento JL,et al. Pharmacogenetics of capecitabine in advanced breast cancer patients [J]. Clin Cancer Res,2006,12(18):5496-5502.
|
[31] |
Goan YG, Zhou B, Hu E, et al. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. [J]. Cancer Res, 1999, 59(17):4204-4207.
|
[32] |
Jordheim LP, Sève P, Trédan O, et al. The ribonucleotide reductase large subunit (RRM1) as a predictive factor in patients with cancer[J]. Lancet Oncol,2011,12(7):693-702.
|
[33] |
Rha SY, Jeung HC, Choi YH, et al. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients [J]. Oncologist,2007,12(6):622-630.
|
[34] |
Chew HK, Doroshow JH, Frankel P, et al. Phase II studies of gemcitabine and cisplatin in heavily and minimally pretreated metastatic breast cancer [J]. J Clin Oncol, 2009, 27(13):2163-2169.
|
[35] |
Yonemori K,Ueno H,Okusaka T,et al. Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus cisplatin [J].Clin Cancer Res,2005,11(7):2620-2624.
|
[36] |
Sugiyama E, Kaniwa N, Kim SR, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism [J]. J Clin Oncol,2007,25(1):32-42.
|
[37] |
Mercier C, Evrard A, Ciccolini J. Genotype-based methods for anticipating gemcitabine-related severe toxicities may lead to falsenegative results[ J]. J Clin Oncol,2007,25(30):4855-4856.
|