切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (02) : 97 -101. doi: 10.3877/cma.j.issn.1674-0807.2017.02.008

综述

乳腺癌血管生成拟态的分子机制研究进展
陈宇潇1, 倪成铭1, 张金梦1, 孙瑞凤1, 陈婷1, 张治宣1, 宫海凤1, 杨薇1, 赵涵1, 蔡维维1, 邱丽颖1, 冯磊1,()   
  1. 1.214000 江南大学无锡医学院
  • 收稿日期:2016-05-11 出版日期:2017-04-01
  • 通信作者: 冯磊
  • 基金资助:
    江苏省中医药管理局中医药科技创新基金项目(HZ0816KY)无锡市科技局项目(CSE31N1330)江南大学大学生创新创业训练计划项目(2016390Y)江南大学无锡医学院本科教育教学改革研究项目(JG2016YY008)

Molecular mechanism of angiogenesis mimicry in breast cancer

Yuxiao Chen, Chengming Ni, Jinmeng Zhang, Ruifeng Sun, Ting Chen, Zhixuan Zhang, Haifeng Gong, Wei Yang, Han Zhao, Weiwei Cai, Liying Qiu, Lei Feng()   

  • Received:2016-05-11 Published:2017-04-01
  • Corresponding author: Lei Feng
引用本文:

陈宇潇, 倪成铭, 张金梦, 孙瑞凤, 陈婷, 张治宣, 宫海凤, 杨薇, 赵涵, 蔡维维, 邱丽颖, 冯磊. 乳腺癌血管生成拟态的分子机制研究进展[J/OL]. 中华乳腺病杂志(电子版), 2017, 11(02): 97-101.

Yuxiao Chen, Chengming Ni, Jinmeng Zhang, Ruifeng Sun, Ting Chen, Zhixuan Zhang, Haifeng Gong, Wei Yang, Han Zhao, Weiwei Cai, Liying Qiu, Lei Feng. Molecular mechanism of angiogenesis mimicry in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2017, 11(02): 97-101.

血管生成拟态(VM)是指不依赖内皮细胞的,由侵袭性肿瘤细胞构成的功能性血管样结构。 乳腺癌中,VM 参与了肿瘤的血液供应、转移和耐药等过程,与患者不良预后有关。 笔者主要论述了血管性信号通路、上皮-间质转化(EMT)及HER-2、钠氢交换子调节因子1(NHERF1)、紧密连接蛋白claudin 等关键蛋白在乳腺癌VM 形成过程中的作用,旨在为临床诊疗策略的优化及靶向药物的研发提供理论依据和方向。

图1 乳腺癌血管生成拟态形成的分子机制示意图 注:β-catenin 为β-连环蛋白;Axin 为轴抑制蛋白;APC 为肠腺瘤息肉病基因;COX 为环氧化酶;Claudin 为紧密连接蛋白;EGFR 为表皮生长因子受体;EP 为前列腺素类受体;EphA2 为促红细胞生成素产生肝细胞受A2;ERK 为细胞外信号调节激酶;Frizzled 为卷曲蛋白;FAK 为黏着斑激酶;FGFR 为成纤维生长因子受体;GSK3β 为糖原合成酶激酶3β;HER 为人类表皮生长因子受体;HSP 为热休克蛋白;HIF 为缺氧诱导因子;LRP 为低密度脂蛋白受体相关蛋白;Laminin 为层黏连蛋白;MMP 为基质金属蛋白酶;MAPK 为丝裂原激活的蛋白激酶;PDGF 为血小板源生长因子;PI3K 为磷脂酰肌醇-3-羟激酶;PG 为前列腺素;Serpine 为丝氨酸蛋白酶抑制剂;Slpi 为分泌性白细胞蛋白酶抑制因子;Sunitinib 为舒尼替尼;Twist 为上皮间质转化因子;VE-cadherin为血管内皮细胞钙黏蛋白;VEGF 为血管内皮生长因子;VEGFR 为血管内皮生长因子受体
[1]
Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J].Am J Pathol,1999,155(3):739-752.
[2]
Ricci-Vitiani L,Pallini R,Biffoni M,et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells[J]. Nature,2010,468(7325):824-828.
[3]
Zhang D, Sun B, Zhao X, et al. Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer[J]. Mol Cancer,2014,13:207.
[4]
Liu T, Sun B, Zhao X, et al. OCT4 expression and vasculogenic mimicry formation positively correlate with poor prognosis in human breast cancer[J]. Int J Mol Sci,2014,15(11):19 634-19 649.
[5]
Wagenblast E, Soto M, Gutiérrez-ángel S, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis[J]. Nature,2015,520(7547):358-362.
[6]
Partridge AH, Rumble RB, Carey LA, et al. Chemotherapy and targeted therapy for women with human epidermal growth factor receptor 2-negative (or unknown) advanced breast cancer: American Society of Clinical Oncology Clinical Practice Guideline[J]. J Clin Oncol,2014,32(29):3307-3329.
[7]
Barrios CH, Liu MC, Lee SC, et al. Phase Ⅲrandomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer[J]. Breast Cancer Res Treat, 2010,121(1):121-131.
[8]
Crown JP, Diéras V, Staroslawska E, et al. Phase Ⅲtrial of sunitinib in combination with capecitabine versus capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer[J]. J Clin Oncol,2013,31(23):2870-2878.
[9]
Kerbel RS. Reappraising antiangiogenic therapy for breast cancer[J].Breast,2011,20 Suppl 3:S56-60.
[10]
Yao N, Ren K, Jiang C, et al. Combretastatin A4 phosphate treatment induces vasculogenic mimicry formation of W256 breast carcinoma tumor in vitro and in vivo [J]. Tumour Biol, 2015, 36 (11):8499-8510.
[11]
Hess AR, Seftor EA, Gruman LM, et al. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway:implications for vasculogenic mimicry[J]. Cancer Biol Ther, 2006, 5(2):228-233.
[12]
Hess AR, Hendrix MJ. Focal adhesion kinase signaling and the aggressive melanoma phenotype [J]. Cell Cycle, 2006, 5 (5):478-480.
[13]
Hess AR, Seftor EA, Seftor RE, et al. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry[J]. Cancer Res,2003,63(16):4757-4762.
[14]
Hess AR, Postovit LM, Margaryan NV, et al. Focal adhesion kinase promotes the aggressive melanoma phenotype[J]. Cancer Res, 2005,65(21):9851-9860.
[15]
Seftor RE, Seftor EA, Koshikawa N, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma [J]. Cancer Res, 2001,61(17):6322-6327.
[16]
Sun MG, Shi JF, Li XY, et al. Targeting epirubicin plus quinacrine liposomes modified with DSPE-PEG2000-C (RGDfK) conjugate for eliminating invasive breast cancer[J]. J Biomed Nanotechnol, 2015,11(8):1339-1353.
[17]
Zeng F, Ju RJ, Liu L, et al. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer [ J]. Oncotarget, 2015, 6 (34):36 625-36 642.
[18]
Ju RJ, Li XT, Shi JF, et al. Liposomes, modified with PTD(HIV-1)peptide, containing epirubicin and celecoxib, to target vasculogenic mimicry channels in invasive breast cancer[J]. Biomaterials, 2014,35(26):7610-7621.
[19]
Shi JF, Sun MG, Li XY, et al. A combination of targeted sunitinib liposomes and targeted vinorelbine liposomes for treating invasive breast cancer[J]. J Biomed Nanotechnol,2015,11(9):1568-1582.
[20]
Sun T, Zhao N,Zhao XL,et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry[J]. Hepatology,2010,51(2):545-556.
[21]
Zhao N, Sun H,Sun B,et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC[J]. Sci Rep, 2016, 6:23 091.
[22]
Ristimäki A, Sivula A, Lundin J,et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer[J]. Cancer Res,2002,62(3):632-635.
[23]
Mosalpuria K, Hall C, Krishnamurthy S, et al. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients[J].Mol Clin Oncol,2014,2(5):845-850.
[24]
Basu GD, Liang WS, Stephan DA, et al. A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells[J]. Breast Cancer Res,2006,8(6):R69.
[25]
Robertson FM, Simeone AM, Lucci A, et al. Differential regulation of the aggressive phenotype of inflammatory breast cancer cells by prostanoid receptors EP3 and EP4 [J]. Cancer, 2010, 116 (11 Suppl):2806-2814.
[26]
Ravi M,Tentu S,Baskar G,et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells[J]. BMC Cancer,2015,15:768.
[27]
Vartanian A, Stepanova E, Grigorieva I, et al. VEGFR1 and PKCalpha signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner [J]. Melanoma Res, 2011,21(2):91-98.
[28]
Spinella F, Caprara V, Di Castro V, et al. Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells[J]. J Mol Med (Berl),2013,91(3):395-405.
[29]
Karroum A,Mirshahi P,Faussat AM,et al. Tubular network formation by adriamycin-resistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2/VEGFR-3 over-expressions [ J]. Eur J Pharmacol,2012,685(1-3):1-7.
[30]
Gehmert S, Gehmert S, Prantl L, et al. Breast cancer cells attract the migration of adipose tissue-derived stem cells via the PDGF-BB/PDGFR-β signaling pathway[J]. Biochem Biophys Res Commun,2010,398(3):601-605.
[31]
Plantamura I, Casalini P, Dugnani E, et al. PDGFRβ and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells[J]. Mol Oncol,2014,8(5):968-981.
[32]
Sun B, Zhang D, Zhao N, et al. Epithelial-to-endothelial transition and cancer stem cells: two cornerstones of vasculogenic mimicry in malignant tumors[J]. Oncotarget, 2016. doi: 10.18632/oncotarget.8461.
[33]
Fang X, Cai Y, Liu J, et al. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal[J]. Oncogene, 2011, 30(47):4707-4720.
[34]
Sun T, Sun BC, Zhao XL, et al. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma[J]. Hepatology,2011,54(5):1690-1706.
[35]
Luan YY, Liu ZM, Zhong JY, et al. Effect of grape seed proanthocyanidins on tumor vasculogenic mimicry in human triplenegative breast cancer cells[J]. Asian Pac J Cancer Prev, 2015,16(2):531-535.
[36]
Qi L,Song W,Liu Z,et al. Wnt3a promotes the vasculogenic mimicry formation of colon cancer via Wnt/β-Catenin signaling[J]. Int J Mol Sci,2015,16(8):18 564-18 579.
[37]
Medema JP. Cancer stem cells: the challenges ahead[J]. Nat Cell Biol,2013,15(4):338-344.
[38]
Liu TJ, Sun BC, Zhao XL, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene,2013,32(5):544-553.
[39]
Paulis YW, Huijbers EJ, van der Schaft DW, et al. CD44 enhances tumor aggressiveness by promoting tumor cell plasticity [ J].Oncotarget,2015,6(23):19 634-19 646.
[40]
Liu T, Sun B, Zhao X, et al. USP44+ cancer stem cell subclones contribute to breast cancer aggressiveness by promoting vasculogenic mimicry[J]. Mol Cancer Ther,2015,14(9):2121-2131.
[41]
Lee CH, Wu YT, Hsieh HC, et al. Epidermal growth factor/heat shock protein 27 pathway regulates vasculogenic mimicry activity of breast cancer stem/progenitor cells [J]. Biochimie, 2014, 104:117-126.
[42]
van Malenstein H, Dekervel J, Verslype C, et al. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-tomesenchymal transition, increased invasion and risk of rebound growth[J]. Cancer Lett,2013,329(1):74-83.
[43]
Nagai T, Arao T, Furuta K, et al. Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma [J]. Mol Cancer Ther, 2011, 10 (1):169-177.
[44]
Liu T, Sun B, Zhao X, et al. HER2/neu expression correlates with vasculogenic mimicry in invasive breast carcinoma[J]. J Cell Mol Med,2013,17(1):116-122.
[45]
Cardone RA, Greco MR, Capulli M, et al. NHERF1 acts as a molecular switch to program metastatic behavior and organotropism via its PDZ domains[J]. Mol Biol Cell,2012,23(11):2028-2040.
[46]
Krämer F, White K, Kubbies M, et al. Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer[J]. Hum Genet,2000,107(3):249-256.
[47]
Kominsky SL, Argani P, Korz D, et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast[J].Oncogene,2003,22(13):2021-2033.
[48]
Harrell JC,Pfefferle AD,Zalles N,et al. Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis[J]. Clin Exp Metastasis,2014,31(1):33-45.
[49]
Cui YF, Liu AH,An DZ,et al. Claudin-4 is required for vasculogenic mimicry formation in human breast cancer cells[J]. Oncotarget,2015,6(13):11 087-11 097.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要