[1] |
Marques JHM, Mota AL, Oliveira JG, et al. Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: In vivo and in vitro studies[J]. Life Sci, 2018, 208:131-138.
|
[2] |
Sheikh A, Hussain SA, Ghori Q, et al. The spectrum of genetic mutations in breast cancer[J]. Asian Pac J Cancer Prev, 2015, 16(6):2177-2185.
|
[3] |
Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence[J]. Breast Cancer Res Treat, 2016, 159(3): 395-406.
|
[4] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
[5] |
黄莉,王若峥. 细胞周期素与肿瘤放射敏感性[J]. 新疆医科大学学报,2008, 31(11): 1510-1512.
|
[6] |
Zhu R, Li W, Xu Y, et al. Upregulation of BTG1 enhances the radiation sensitivity of human breast cancer in vitro and in vivo[J]. Oncol Rep, 2015, 20(1): 3017-3024.
|
[7] |
Wu D, Zhou W, Wang S, et al. Tob1 enhances radiosensitivity of breast cancer cells involving the JNK and p38 pathways[J]. Cell Biol Int, 2016, 39(12): 1425-1430.
|
[8] |
Galina G, Teplyuk NM, Krichevsky AM. Context effect: microRNA-10b in cancer cell proliferation, spread and death[J]. Autophagy, 2011, 7(11): 1384-1386.
|
[9] |
Quesne JL, Caldas C. micro-RNAs and breast cancer[J]. Mol Oncol, 2010, 4(3): 230-241.
|
[10] |
Sun Q, Liu T, Yuan Y, et al. miR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1[J]. Int J Cancer, 2015, 136(5): 1003-1012.
|
[11] |
Liang WT, Cheng ZY, Jia ZQ, et al. PTEN: a new target in inhibiting of tumor invasion and metastasis[J]. Sheng Li Ke Xue Jin Zhan, 2011, 42(3):201-205.
|
[12] |
Lei Y, Yanming Y, Jiguang H, et al. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells[J]. Oncol Rep, 2015, 34(4): 1845-1852.
|
[13] |
Luo M, Ding L, Li Q, et al. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα[J]. Breast Cancer, 2017, 24(5): 673-682.
|
[14] |
Wu J, Zhang JY, Yin L, et al. HAP1 gene expression is associated with radiosensitivity in breast cancer cells[J]. Biochem Biophys Res Commun, 2015, 456(1): 162-166.
|
[15] |
Yang N, Wang P, Wang WJ, et al. Inhibition of cathepsin L sensitizes human glioma cells to ionizing radiation in vitro through NF-κB signaling pathway[J]. Acta Pharmacol Sin, 2015, 36(3): 400.
|
[16] |
Hou J, Zhou Z, Chen X, et al. HER2 reduces breast cancer radiosensitivity by activating focal adhesion kinase in vitro and in vivo[J]. Oncotarget, 2016,7(29):45 186-45 198.
|
[17] |
Santivasi WL, Fen X. Ionizing radiation-induced DNA damage, response, and repair[J]. Antioxid Redox Signal, 2014, 21(2): 251-259.
|
[18] |
Tokuyama Y, Furusawa Y, Ide H, et al. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation[J]. J Radiat Res, 2015, 56(3):446-455.
|
[19] |
Sonoda E, Hochegger H, Saberi A, et al. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair[J]. DNA Repair, 2006, 5(9): 1021-1029.
|
[20] |
Mijnes J, Veeck J, Gaisa NT, et al. Promoter methylation of DNA damage repair (DDR) genes in human tumor entities: RBBP8/CtIP is almost exclusively methylated in bladder cancer[J]. Clin Epigenetics, 2018, 10:15.
|
[21] |
Hoa NN, Kobayashi J, Omura M, et al. BRCA1 and CtIP are both required to recruit Dna2 at double-strand breaks in homologous recombination[J]. PLoS One, 2015, 10(4): e0124495.
|
[22] |
So S, Davis AJ, Chen DJ. Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites[J]. J Cell Biol, 2009, 187(7): 977-990.
|
[23] |
Lin ML, Park JH, Nishidate T, et al. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family[J]. Breast Cancer Res, 2007, 9(1): R17.
|
[24] |
Beke L, Kig C, Linders JT, et al. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells[J]. Biosci Rep, 2015, 5(6).pii: e00267.
|
[25] |
Sun H, Wang Y, Wang Z, et al. Aurora-A controls cancer cell radio-and chemoresistance via ATM/Chk2-mediated DNA repair networks[J]. Biochim Biophys Acta, 2014, 1843(5): 934-944.
|
[26] |
Peijing Z, Yongkun W, Li W, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1[J]. Nat Cell Biol, 2014, 16(9): 864-875.
|
[27] |
Kristoffer V, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair[J]. Oncogene, 2003, 1(37): 5792-5812.
|
[28] |
Ciszewski WM, Tavecchino M, Dastych J, et al. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin[J]. Breast Cancer Res Treat, 2014, 143(1): 47-55.
|
[29] |
Agresti A, Bianchi ME. HMGB proteins and gene expression[J]. Curr Opin Genet Dev, 2003, 13(2): 170-178.
|
[30] |
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5(4): 331-342.
|
[31] |
Shaobo K, Fuxiang Z, Hui Y, et al. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells[J]. Int J Oncol, 2015, 46(3): 1051.
|
[32] |
Ramdzan ZM, Ginjala V, Pinder JB, et al. The DNA repair function of CUX1 contributes to radioresistance[J]. Oncotarget, 2017, 8(12):19 021-19 038.
|
[33] |
Karar J, Maity A. Modulating the tumor microenvironment to increaseradiation responsiveness[J]. Cancer Biol Ther, 2009, 8(21): 1994-2001.
|
[34] |
Cohen-Jonathan Moyal E. Angiogenic inhibitors and radiotherapy: from the concept to the clinical trial[J]. Cancer Radiother, 2009, 13(6-7): 562-567.
|
[35] |
Zhong R, Xu H, Chen G, et al. The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells[J]. Tumour Biol, 2015, 36(9): 7077-7083.
|