[1] |
Morel AP, Lièvre M, Thomas C, et a1. Generation of breast cancer stem cells through epithelial-mesenchymal transition[J]. PLoS One,2008,3(8): e2888.
|
[2] |
Chuthapisith S, Eremin J, El-Sheemey M, et al. Breast cancer chemoresistance: emerging importance of cancer stem cells[J]. Surg Oncol,2010,19(1): 27-32.
|
[3] |
Kai K, Arima Y, Kamiya T, et al. Breast cancer stem cells[J]. Breast Cancer,2010,17(2): 80-85.
|
[4] |
A1-Hajj M, Wicha MS, Benito-Hernandez A, et al.Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA,2003,100(7): 3983-3988.
|
[5] |
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5): 555-567.
|
[6] |
Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells [J].Cell,2008,133(4): 704-715.
|
[7] |
Eastham AM, Speneer H, Soncin F, et al. Epithelialmesenchymal transition events during human embryonic stem cell differentiation[J]. Cancer Res, 2007, 67 (23): 11 254-11 262.
|
[8] |
Tsuji T, Ibaragi S, Shima K, et al. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth [J]. Cancer Res,2008,6 8(24): 10377-10386.
|
[9] |
Liu S, Cong Y, Wang D, et al, Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts[J]. Stem Cell Reports, 2014,2(1): 78-91.
|
[10] |
Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression[J]. Cancer Sci, 2007,98(10): 1512-1520.
|
[11] |
Micalizzi DS, Farabaugh SM, Ford HL. Epithelialmesenchymal transition in cancer: parallels between normal development and tumor progression[J]. J Mammary Gland Biol Neoplasia,2010,15(2): 117-134.
|
[12] |
Lonardo E, Hermann PC, Mueller MT, et al. Nodal/activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy[J]. Cell Stem Cell,2011,9(1): 433-446.
|
[13] |
Storci G, Bertoni S, De Carolis S, et al. Slug/β-catenine dependent proinflammatory phenotype in hypoxic breast cancer stem cells[J]. Am J Pathol,2013,183(5): 1688-1697.
|
[14] |
Junk DJ, Cipriano R, Bryson BL, et al. Tumor microenvironmental signaling elicits epithelial-mesenchymal plasticity through cooperation with transforming genetic events[J]. Neoplasia,2013,15(9): 1100-1109.
|
[15] |
Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis[J]. Chin J Cancer, 2011,30(9): 603-611.
|
[16] |
Mirams GR, Byme HM, King JR. A multiple timescale analysis of a mathematical model of the Wnt/β-catenin signaling pathway[J]. J Math Biol,2010,60(1): 131-160.
|
[17] |
Hsu TH, Jiang SY, Chan WL, et al. Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells[EB/OL].[2014-09-20]. http: / /www.nature.com/cdd/journal/vaop/ncurrent/full/cdd2014175a.html.
|
[18] |
Yook JI, Li XY, Ota I, et al. A Wnt-Axin2-GSK3 beta cascade regulates Snail1 activity in breast cancer cells[J]. Nat Cell Biol,2006,8(12): 1398-1406.
|
[19] |
Bassères DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression [J].Oncogene,2006,25(51): 6817-6830.
|
[20] |
Min C, Eddy SF, Sherr DH, et al. NF-kappaB and epithelial to mesenchymal transition of cancer[J]. J Cell Biochem,2008,104(3): 733-744.
|
[21] |
Wu Y, Deng J, Rychahou PG, et al. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion [J]. Cancer Cell,2009,15(5): 416-428.
|
[22] |
Storci G, Sansone P, Mari S, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype[J]. J Cell Physiol,2010,225(3): 682-691.
|
[23] |
Prasad S, Ravindran J, Aggarwal BB. NF-kappaB and cancer: how intimate is this relationship[J]. Mol Cell Biochem,2010,336(1-2): 25-37.
|
[24] |
Bhat-Nakshatri P, Appaiah H, Ballas C, et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype[J].BMC Cancer,2010,10(1): 1-16.
|
[25] |
Brabletz S, Bajdak K, Meidhof S, et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells[J].EMBO J,2011,30(4): 770-782.
|
[26] |
Harrison H, Farnie G, Howell SJ, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor[J]. Cancer Res,2010,70(2): 709-718.
|
[27] |
McGowan PM, Simedrea C, Ribot EJ, et al. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer[J]. Mol Cancer Res,2011,9(7): 834-844.
|
[28] |
Ling H, Sylvestre JR, Jolicoeur P. Cyclin D1-dependent induction of luminal inflammatory breast tumors by activated notch3[J]. Cancer Res,2013,73(19): 5963-5973.
|
[29] |
O’Neill CF, Urs S, Cinelli C, et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth[J]. Am J Pathol,2007,171(3): 1023-1036.
|
[30] |
Leong KG, Niessen K, Kulic I, et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin [J]. J Exp Med,2007,204(12): 2935-2948.
|
[31] |
Yang L, Xie G, Fan Q, et al. Activation of the hedgehogsignaling pathway in human cancer and the clinical implications[J]. Oncogene,2010,29(4): 469-481.
|
[32] |
Tao Y, Mao J, Zhang Q, et al. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer[J]. Oncol Lett,2011,2(5): 995-1001.
|
[33] |
Das S, Tucker JA, Khullar S, et al. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases[J]. PLoS One,2012,7(3): e34374.
|
[34] |
Merchant AA, Matsui W. Targeting Hedgehog-a cancer stem cell pathway[J]. Clin Cancer Res, 2010, 16(12): 3130-3140.
|
[35] |
Lei J, Fan L, Wei G, et al. Gli-1 is crucial for hypoxiainduced epithelial-mesenchymal transition and invasion of breast cancer[EB/OL].[2014-09-20]. http: / /link.springer.com/article/10.1007/s13277-014-2948-z/fulltext.html.
|
[36] |
Sims-Mourtada J, Opdenaker LM, Davis J, et al. Taxaneinduced Hedgehog signaling is linked to expansion of breast cancer stem-like populations after chemotherapy[EB/OL].[2014-09-20]. http: / /onlinelibrary. wiley. com/doi/10.1002/mc.22225/full.
|
[37] |
Fan P, Fan S, Wang H, et al. Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway[J]. Stem Cell Res Ther,2013,4(6): 146.
|