[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin,2024,74(3):229-263.
|
[2] |
Srivastava S, Koay EJ, Borowsky AD, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma [J]. Nat Rev Cancer, 2019,19(6):349-358.
|
[3] |
Xin Y, Zhang X, Yang Y, et al. A multicenter, hospital-based and non-inferiority study for diagnostic efficacy of automated whole breast ultrasound for breast cancer in China [J]. Sci Rep,2021,11(1):13902.
|
[4] |
Mendelson, EB, Böhm-Vélez M,Berg WA. Breast imaging reporting and data system: ACR BI-RADS-breast imaging[M]. Reston, VA: American College of Radiology, 2003.
|
[5] |
Mendelson EB, Böhm-Vélez M, Berg WA, et al. ACR BI-RADS Ultrasound[M]. Reston, VA: American College of Radiology,2013:149.
|
[6] |
Bruening W, Fontanarosa J, Tipton K, et al. Systematic review: comparative effectiveness of core-needle and open surgical biopsy to diagnose breast lesions [J]. Ann Intern Med,2010,152(4):238-246.
|
[7] |
Park HL, Hong J. Vacuum-assisted breast biopsy for breast cancer[J]. Gland Surg,2014,3(2):120-127.
|
[8] |
Lei S, Zheng R, Zhang S, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020 [J]. Cancer Commun (Lond),2021,41(11):1183-1194.
|
[9] |
Luo WQ, Huang QX, Huang XW, et al. Predicting breast cancer in Breast Imaging Reporting and Data System (BI-RADS) ultrasound category 4 or 5 lesions: a nomogram combining radiomics and BI-RADS [J]. Sci Rep,2019,9(1):11921.
|
[10] |
Niu Z, Tian JW, Ran HT, et al. Risk-predicted dual nomograms consisting of clinical and ultrasound factors for downgrading BI-RADS category 4A breast lesions - a multiple centre study [J]. J Cancer,2021,12(1):292-304.
|
[11] |
Yang Y, Hu Y, Shen S, et al. A new nomogram for predicting the malignant diagnosis of Breast Imaging Reporting and Data System (BI-RADS) ultrasonography category 4A lesions in women with dense breast tissue in the diagnostic setting [J]. Quant Imaging Med Surg,2021,11(7):3005-3017.
|
[12] |
Zhou P, Jin C, Lu J, et al. Modified model for diagnosing Breast Imaging Reporting and Data System category 3 to 5 breast lesions: retrospective analysis and nomogram development [J]. J Ultrasound Med,2021,40(1):151-161.
|
[13] |
Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in southeast Asia: a meta-analysis [J]. Asian Pac J Cancer Prev, 2017,18(12):3201-3206.
|
[14] |
Mazouni C, Sneige N, Rouzier R, et al. A nomogram to predict for malignant diagnosis of BI-RADS category 4 breast lesions [J]. J Surg Oncol,2010,102(3):220-224.
|
[15] |
Liang T, Cong S, Yi Z, et al. Ultrasound-based nomogram for distinguishing malignant tumors from nodular sclerosing adenoses in solid breast lesions [J]. J Ultrasound Med,2021,40(10):2189-2200.
|
[16] |
Tot T, Gere M, Hofmeyer S,et al. The clinical value of detecting microcalcifications on a mammogram [J]. Semin Cancer Biol,2021,72:165-174.
|
[17] |
Elverici E, Barça AN, Aktaş H, et al. Nonpalpable BI-RADS 4 breast lesions: sonographic findings and pathology correlation [J]. Diagn Interv Radiol, 2015,21(3):189-194.
|
[18] |
Li T, Li Y, Yang Y, et al. Logistic regression analysis of ultrasound findings in predicting the malignant and benign phyllodes tumor of breast [J]. PLoS One, 2022,17(3):e0265952.
|
[19] |
Rahbar G, Sie AC, Hansen GC, et al. Benign versus malignant solid breast masses: US differentiation [J]. Radiology, 1999,213(3):889-894.
|