[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68 (6): 394-424.
|
[2] |
Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2011[J]. Ann Oncol, 2011, 22 (8): 1736-1747.
|
[3] |
Waks AG, Winer EP. Breast cancer treatment: a review[J]. JAMA, 2019, 321 (3): 288-300.
|
[4] |
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363 (20): 1938-1948.
|
[5] |
Bonotto M, Gerratana L, Poletto E, et al. Measures of outcome in metastatic breast cancer: insights from a real-world scenario[J]. Oncologist, 2014, 19 (6): 608-615.
URL
|
[6] |
Goetz MP, Gradishar WJ, Anderson BO, et al. NCCN guidelines insights: breast cancer, version 3.2018[J]. J Natl Compr Canc Netw: NCCN, 2019, 17 (2): 118-126.
|
[7] |
Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era[J]. BMC Med, 2019, 17 (1): 90.
|
[8] |
Brown SD, Warren RL, Gibb EA, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival[J]. Genome Res, 2014, 24 (5): 743-750.
URL
|
[9] |
Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase Ⅲ randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98[J]. J Clin Oncol, 2013, 31 (7): 860-867.
URL
|
[10] |
Wimberly H, Brown JR, Schalper K, et al. PD-L1 Expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer[J]. Cancer Immunol Res, 2015, 3 (4): 326-332.
|
[11] |
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018, 379 (22): 2108-2121.
|
[12] |
Jia H, Truica CI, Wang B, et al. Immunotherapy for triple-negative breast cancer: existing challenges and exciting prospects[J]. Drug Resist Updat, 2017, 32: 1-15.
|
[13] |
Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase Ⅱ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30 (3): 405-411.
|
[14] |
Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase Ⅱ KEYNOTE-086 study [J]. Ann Oncol, 2019, 30 (3): 397-404.
|
[15] |
Gallyas F Jr, Sumegi B. Mitochondrial protection by PARP inhibition[J]. Int J Mol Sci, 2020, 21 (8): 2767.
|
[16] |
Byrum AK, Vindigni A, Mosammaparast N. Defining and modulating 'BRCAness’[J]. Trends Cell Biol, 2019, 29 (9): 740-751.
|
[17] |
Dobzhansky T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura[J]. Genetics, 1946, 31(3): 269-290.
|
[18] |
Dobzhansky T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura[J]. Genetics, 1946, 31 (3): 269-290.
|
[19] |
Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA)[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21 (1): 134-147.
|
[20] |
Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377 (6): 523-533.
|
[21] |
Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression[J]. Clin Cancer Res, 2017, 23 (14): 3711-3720.
|
[22] |
Prasanna T, Wu F, Khanna KK, et al. Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy[J]. Cancer Sci, 2018, 109 (11): 3383-3392.
|
[23] |
Mella M, Kauppila JH, Karihtala P, et al. Tumor infiltrating CD8(+) T lymphocyte count is independent of tumor TLR9 status in treatment naive triple negative breast cancer and renal cell carcinoma[J]. Oncoimmunology, 2015, 4 (6): e1002726.
|
[24] |
Huang J, Wang L, Cong Z, et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer[J]. Biochem Biophys Res Commun, 2015, 463 (4): 551-556.
|
[25] |
Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma[J]. JAMA Oncol, 2019, 5 (8): 1141-1149.
|
[26] |
Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment[J]. Nat Rev Clin Oncol, 2017, 14 (12): 717-734.
|
[27] |
Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment[J]. Adv Mater, 2020, 32 (22): e2000055.
|
[28] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144 (5): 646-674.
URL
|
[29] |
Yi M, Jiao D, Qin S, et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment[J]. Mol Cancer, 2019, 18 (1): 60.
|
[30] |
Hendry SA, Farnsworth RH, Solomon B, et al. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment[J]. Front Immunol, 2016, 7: 621.
|
[31] |
Schmittnaegel M, Rigamonti N, Kadioglu E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade[J]. Sci Transl Med, 2017, 9 (385): eaak9670.
|
[32] |
Raman D, Baugher PJ, Thu YM, et al. Role of chemokines in tumor growth[J]. Cancer Lett, 2007, 256 (2): 137-165.
|
[33] |
Chang AL, Miska J, Wainwright DA, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells[J]. Cancer Res, 2016, 76 (19): 5671-5682.
|
[34] |
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia[J]. Cancer Cell, 2014, 26 (5): 605-622.
URL
|
[35] |
Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab, 2019, 30 (1): 36-50.
|
[36] |
Teleanu RI, Chircov C, Grumezescu AM, et al. Tumor angiogenesis and anti-Angiogenic strategies for cancer treatment[J]. J Clin Med, 2019, 9 (1): 84.
|
[37] |
Wallin JJ, Bendell JC, Funke R, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma[J]. Nat Commun, 2016, 7: 12 624.
|
[38] |
Carter T, Shaw H, Mulholland P. Combining ipilimumab and bevacizumab in glioblastoma: is it really safe and effective? Author response[J]. Clin Oncol (R Coll Radiol), 2016, 28 (10): 664.
|
[39] |
Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma[J]. Cancer Immunol Res, 2014, 2 (7): 632-642.
URL
|
[40] |
Miles DW, Chan A, Dirix LY, et al. Phase Ⅲ study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer [J]. J Clin Oncol, 2010, 28 (20): 3239-3247.
|
[41] |
Curigliano G, Pivot X, Cortes J, et al. Randomized phase Ⅱ study of sunitinib versus standard of care for patients with previously treated advanced triple-negative breast cancer[J]. Breast, 2013, 22 (5): 650-656.
|
[42] |
Baselga J, Zamagni C, Gómez P, et al. RESILIENCE: Phase Ⅲ randomized, double-blind trial comparing sorafenib with capecitabine versus placebo with capecitabine in locally advanced or metastatic HER-2-negative breast cancer[J]. Clin Breast Cancer, 2017, 17 (8): 585-594.
|
[43] |
Hu X, Zhang J, Xu B, et al. Multicenter phase Ⅱ study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer[J]. Int J Cancer, 2014, 135 (8): 1961-1969.
|
[44] |
Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase Ⅱ trial[J]. J Immunother Cancer, 2020, 8 (1): e000696.
|
[45] |
Li Q, Wang Y, Jia W, et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade[J]. Clin Cancer Res, 2019, 26 (7): 1712-1724.
|
[46] |
Carlson RD, Flickinger JC Jr, Snook AE. Talkin’ toxins: from Coley’s to modern cancer immunotherapy[J]. Toxins (Basel), 2020, 12(4): 241.
|
[47] |
Godfrey DI, Le Nours J, Andrews DM, et al. Unconventional T cell targets for cancer immunotherapy[J]. Immunity, 2018, 48 (3): 453-473.
|
[48] |
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17 (9): 559-572.
|
[49] |
Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19 (11): 1480-1492.
|
[50] |
Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378 (14): 1277-1290.
|
[51] |
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018, 378 (22): 2093-2104.
|
[52] |
Santa-Maria CA, Kato T, Park JH, et al. A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer[J]. Oncotarget, 2018, 9 (27): 18 985-18 996.
|
[53] |
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control[J]. Nat Rev Genet, 2016, 17 (8): 487-500.
|
[54] |
张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传,2019, 41 (7): 567-581.
|
[55] |
Huang M, Zhang J, Yan C, et al. Small molecule HDAC inhibitors: promising agents for breast cancer treatment[J]. Bioorg Chem, 2019, 91: 103 184.
|
[56] |
Chao MW, Chu PC, Chuang HC, et al. Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability[J]. Oncotarget, 2016, 7 (2): 1796-1807.
|
[57] |
Gameiro SR, Malamas AS, Tsang KY, et al. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells[J]. Oncotarget, 2016, 7 (7): 7390-7402.
|
[58] |
Guerriero JL, Sotayo A, Ponichtera HE, et al. Class Ⅱa HDAC inhibition reduces breast tumors and metastases through anti-tumor macrophages[J]. Nature, 2017, 543 (7645): 428-432.
|