[1] |
Van Poznak C, Somerfeld MR, Bast RC, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology clinical practice guideline[J]. J Oncol Pract, 2015, 33(24): 2695-2704.
|
[2] |
Yao H, He G, Yan S, et al.Triple-negative breast cancer: is there a treatment on the horizon?[J]. Oncotarget, 2017, 8(1):1913-1924.
|
[3] |
Holohan C, Schaeybroeck SV, Longley DB, et al. Cancer drug resistance: an evolving paradigm[J]. Nature, 2013, 13(10):714-724.
|
[4] |
Pogoda K, Niwińska A, Murawska M, et al. Analysis of pattern, time and risk factors influencing recurrence in triple-negative breast cancer patients[J]. Med Oncol, 2013, 30(1):388.
|
[5] |
Echeverria GV, Powell E, Seth S, et al. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer[J]. Nat Commun, 2018, 9(1):1-17.
|
[6] |
Anders C, Carey LA. Understanding and treating triple-negative breast cancer[J]. Oncology, 2008,22(11) 1233-1239.
|
[7] |
Steward L, Conant L, Gao F, et al. Predictive factors and patterns of recurrence in patients with triple negative breast cancer[J]. Ann Surg Oncol, 2014,21(7): 2165-2171.
|
[8] |
Pan Y, Yuan Y, Liu G, et al. P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients[J]. PLoS One, 2017, 12(2):e0172324.
|
[9] |
Coates AS, Winer EP, Goldhirsch A, et al. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015[J]. Ann Oncol, 2015, 8(8):1533-1546.
|
[10] |
Ricciardi GR, Adamo B, Leni A, et al. Androgen receptor(AR),E-cadherin, and Ki-67 as emerging targets and novel prognostic markers in triple-negative breast cancer(TNBC) patients[J]. PLoS One, 2015, 10(7):e0132647.
|
[11] |
Alluri P, Newman LA. Basal-like and triple-negative breast cancers: searching for positives among many negatives[J]. Surg Oncol Clin N Am, 2014, 23(3):567-577.
|
[12] |
Masuda H, Baggerly KA, Wang Y, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes[J]. Clin Cancer Res, 2013, 19(19):5533-5540.
|
[13] |
Amberger JS, Bocchini CA, Schiettecatte F, et al.OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43:D789-798.
|
[14] |
Michurina SV, Kolesnikov SI, Bochkareva AL, et al. Expression of Bcl-2 family proteins in the ovarian follicular apparatus in the acute period after experimental hyperthermia [J]. Bull Exp Biol Med, 2018, 164(6):780-783.
|
[15] |
Volkmann N, Marassi FM, Newmeyer DD, et al. The rheostat in the membrane: BCL-2 family proteins and apoptosis[J]. Cell Death Differ, 2014, 21(2): 206-215.
|
[16] |
Xu L, Xie Q, Qi L, et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells [J]. Oncol Rep, 2018, 39(3): 985-992.
|
[17] |
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise[J]. Cell Death Differ, 2017, 24(9):1478-1487.
|
[18] |
Salles G, de JD, Xie W, et al. High expression of anti-apoptotic protein Bcl-2 is a good prognostic factor in colorectal cancer: result of a meta-analysis[J]. World J Gastroenterol, 2017, 23(27):5018-5033.
|
[19] |
Vogler M, Walter HS, Dyer MJS. Targeting anti-apoptotic BCL2 family proteins in haematological malignancies-from pathogenesis to treatment[J]. Br J Haematol, 2017, 178(3): 364-379.
|
[20] |
Karlsson H,Lindqvist AC,Fransson M,et al.Combining CAR T cells and the Bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy[J]. Cancer Gene Ther, 2013, 20(7):386-393.
|
[21] |
Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response[J]. Trends Biochem Sci, 2015, 40(3): 141-148.
|
[22] |
Hwang KT, Woo JW, Shin HC, et al. Prognostic influence of BCL2 expression in breast cancer [J]. Int J Cancer, 2012, 131(7):E1109-E1119.
|
[23] |
Bouchalova K, Kharaishvili G, Bouchal J, et al. Triple negative breast cancer-BCL2 in prognosis and prediction. Review[J]. Curr Drug Targets, 2014, 15(12):1166-1175.
|
[24] |
Abdel-Fatah TM, Perry C, Dickinson P, et al. Bcl2 is an independent prognostic marker of triple negative breast cancer (TNBC) and predicts response to anthracycline combination (ATC) chemotherapy (CT) in adjuvant and neoadjuvant settings[J]. Ann Oncol, 2013, 24(11): 2801-2807.
|
[25] |
Seong MK, Lee JY, Byeon J, et al. Bcl-2 is a highly significant prognostic marker of hormone-receptor-positive, human epidermal growth factor receptor-2-negative breast cancer[J]. Breast Cancer Res Treat, 2015, 150(1):141-148.
|
[26] |
Jézéquel P, Loussouarn D, Guérin-Charbonnel C, et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response[J]. Breast Cancer Res, 2015, 17:43.
|
[27] |
Tsang JY, Ni YB, Chan SK, et al. Androgen receptor expression shows distinctive significance in ER positive and negative breast cancers[J]. Ann Surg Oncol, 2014, 21(7):2218-2228.
|
[28] |
Gasparini P, Fassan M, Cascione L, et al. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options[J]. PLoS One, 2014, 9(2):e88525.
|
[29] |
Barton VN, D’Amato NC, Gordon MA, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo[J]. Mol Cancer Ther, 2015, 14(3):769-778.
|
[30] |
Mrklic' I, Pogorelic' Z, Capkun V,et al. Expression of androgen receptors in triple negative breast carcinomas[J]. Acta Histochem, 2013, 115(4):344-348.
|
[31] |
Thike AA, Yong-Zheng Chong L, Cheok PY, et al. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer[J]. Mod Pathol, 2014, 27(3):352-360.
|
[32] |
Choi JE, Kang SH, Lee SJ, et al. Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer[J]. Ann Surg Oncol, 2015, 22(1):82-89.
|
[33] |
Williams AB, Schumacher B. p53 in the DNA-damage-repair process[J]. Cold Spring Harb Perspect Med, 2016, 6(5). pii: a026070.
|
[34] |
Powell E, Shao J, Yuan Y, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer[J]. Breast Cancer Res, 2016, 18(1):13.
|
[35] |
Kikuchi S, Nishimura R, Osako T, et al. Definition of P53 overexpression and its association with the clinicopathological features in luminal/HER2-negative breast cancer[J]. Anticancer Res, 2013, 33(9):777-788.
|
[36] |
Dumay A, Feugeas JP, Wittmer E, et al. Distinct tumor protein p53 mutants in breast cancer subgroups[J]. Int J Cancer, 2013, 132(5): 1227-1231.
|
[37] |
Synnott NC, Bauer MR, Madden S, et al. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: preclinical investigation with the anti-p53 drug, PK11007[J]. Cancer Lett, 2018, 414(1):99-106.
|
[38] |
Duffy MJ, Synnott NC, Crown J. Mutant p53 in breast cancer: potential as a therapeutic target and biomarker[J]. Breast Cancer Res Treat, 2018, 170(2):213-219.
|
[39] |
Jeong C, Kim Y. LOXL3-sv2, a novel variant of human lysyl oxidase-like 3 (LOXL3), functions as an amine oxidase[J]. Int J Mol Med, 2017, 39(3):719-724.
|
[40] |
Zou HY, Lv GQ, Dai LH, et al. A truncated splice variant of human lysyl oxidase-like 2 promotes migration and invasion in esophageal squamous cell carcinoma[J]. Int J Biochem Cell Biol, 2016, 75:85-98.
|
[41] |
Mizuno K, Seki N, Mataki H, et al. Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma[J]. Int J Oncol, 2016, 48(2):450-460.
|
[42] |
Cui X, Wang G, Shen W, et al. Lysyl oxidase-like 2 is highly expressed in colorectal cancer cells and promotes the development of colorectal cancer[J]. Oncol Rep, 2018, 40(2):932-942.
|
[43] |
Canesin G, Cuevas EP, Santos V, et al. Lysyl oxidase-like 2 (LOXL2) and E47 EMT factor: novel partners in E-cadherin repression and early metastasis colonization[J]. Oncogene, 2015, 34(8):951-964.
|
[44] |
Salvador F, Martin A, López-Menéndez C, et al. Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer[J]. Cancer Res, 2017, 77(21):5846-5859.
|
[45] |
Peng DH, Ungewiss C, Tong P,et al.ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis[J]. Oncogene, 2017, 36(14):1925-1938.
|
[46] |
Weidenfeld K, Schif-Zuck S, Abu-Tayeh H, et al. Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth [J]. Oncotarget, 2016, 7(44):71 362-71 377.
|
[47] |
Moon HJ, Finney J, Xu L, et al. MCF-7 cells expressing nuclear associated lysyl oxidase-like 2(LOX2) exhibit an epithelial-tomesenchymal transition(MET) phenoytype and are highly invasive in vitro[J]. J Biol Chem, 2013, 288(42):30 000-30 008.
|
[48] |
Cuevas EP, Moreno-Bueno G, Canesin G, et al. LOXL2 catalytically inactive mutants mediate epithelial-to-mesenchymal transition[J]. Biol Open, 2014, 3(2):129-137.
|
[49] |
Ahn SG, Dong SM, Oshima A, et al. LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients[J]. Breast Cancer Res Treat, 2013, 141(1):89-99.
|
[50] |
Ruan D, So SP. Prostaglandin E2 produced by inducible COX-2 and mPGES-1 promoting cancer cell proliferation in vitro and in vivo[J]. Life Sci, 2014, 116(1):43-50.
|
[51] |
Sasaki Y, Kamiyama S, Kamiyama A,et al. Genetic-deletion of cyclooxygenase-2 downstream prostacyclin synthase suppresses inflammatory reactions but facilitates carcinogenesis, unlike deletion of microsomal prostaglandin E synthase-1[J]. Sci Rep, 2015, 5:17 376.
|
[52] |
Wang D, Fu L, Sun H, et al. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice[J]. Gastroenterology, 2015, 149(7):1884-1895.
|
[53] |
Solanki R, Agrawal N, Ansari M. COX-2 expression in breast carcinoma with correlation to clinicopathological parameters[J]. Asian Pac J Cancer Prev, 2018, 19(7):1971-1975.
|
[54] |
Rosas C, Sinning M, Ferreira A. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy [J]. Biol Res, 2014, 47(1):27.
|
[55] |
De Cremoux P, Hamy AS, Lehmann-Che J, et al. COX2/PTGS2 expression is predictive of response to neoadjuvant celecoxib in HER2-negative breast cancer patients[J]. Anticancer Res, 2018, 38(3):1485-1490.
|
[56] |
Brandão RD, Veeck J, Van de Vijver KK, et al. A randomised controlled phase Ⅱ trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer[J]. Breast Cancer Res, 2013, 15(2): R29.
|
[57] |
Falandry C, Canney PA, Freyer G, et al. Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer[J]. Ann Oncol, 2009, 20(4):615-620.
|
[58] |
Tian J, Hachim MY, Hachim IY, et al. Cyclooxygenase-2 regulates TGFβ-induced cancer stemness in triple-negative breast cancer[J]. Sci Rep, 2017, 7:40 258.
|
[59] |
Cirak Y, Furuncuoglu Y, Yapicier O, et al. Predictive and prognostic values of BubR1 and synuclein-gamma expression in breast cancer [J]. Int J Clin Exp Pathol, 2015, 8(5):5345-5353.
|
[60] |
Tastekin D, Kargin S, Karabulut M, et al. Synuclein-gamma predicts poor clinical outcome in esophageal cancer patients[J]. Tumour Biol, 2014, 35(12):11 871-11 877.
|
[61] |
Winder AD, Maniar KP, Wei JJ,et al.Synuclein-γ in uterine serous carcinoma impacts survival: an NRG Oncology/Gynecologic Oncology Group study[J]. Cancer, 2017, 123(7):1144-1155.
|
[62] |
Wu K, Huang S, Zhu M, et al. Expression of synuclein gamma indicates poor prognosis of triple-negative breast cancer[J]. Med Oncol, 2013, 30(3):612.
|
[63] |
Song T, Gan W, Chen J, et al. Antibodies against clonorchis sinensis LDH could cross-react with LDHB localizing on the plasma membrane of human hepatocarcinoma cell SMMC-7721 and induce apoptosis[J]. Parasitol Res, 2016, 115(4):1595-1603.
|
[64] |
Chen R,Zhou X,Yu Z,et al. Low expression of LDHB correlates with unfavorable survival in hepatocellular carcinoma: strobe-compliant article[J]. Medicine, 2015, 94(39):e1583.
|
[65] |
Li C, Chen Y, Bai P, et al. LDHB may be a significant predictor of poor prognosis in osteosarcoma[J]. Am J Transl Res, 2016, 8(11):4831-4843.
|
[66] |
McCleland ML, Adler AS, Deming L, et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas[J]. Clin Cancer Res, 2013, 19(4): 773-784.
|
[67] |
Dennison JB, Molina JR, Mitra S, et al. Lactate dehydrogenase B: a metabolic marker of response to neoadjuvant chemotherapy in breast cancer[J]. Clin Cancer Res, 2013, 19(13): 3703-3713.
|
[68] |
McCleland ML, Adler AS, Shang Y, et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer[J]. Cancer Res, 2012, 72(22):5812-5823.
|