切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 336 -345. doi: 10.3877/cma.j.issn.1674-0807.2022.06.002

论著

基于糖酵解相关基因模型的乳腺癌患者预后及免疫功能综合分析
张锦1, 郑瑾2, 叶陈晓3, 陈海滔4, 李欣荣3, 肖海娟1, 郭勇5,()   
  1. 1. 712000 咸阳,陕西中医药大学附属肿瘤医院三病区
    2. 710038 西安,空军军医大学第二附属医院中医科
    3. 310053 杭州,浙江中医药大学第一临床医学院
    4. 310022 杭州,中国科学院大学附属肿瘤医院中西医结合科
    5. 310003 杭州,浙江中医药大学附属第一医院肿瘤科
  • 收稿日期:2021-11-12 出版日期:2022-12-01
  • 通信作者: 郭勇
  • 基金资助:
    国家自然科学基金面上项目(81973805)

Comprehensive analysis of prognosis and immune function of breast cancer patients based on glycolysis related gene model

Jin Zhang1, Jin Zheng2, Chenxiao Ye3, Haitao Chen4, Xinrong Li3, Haijuan Xiao1, Yong Guo5,()   

  1. 1. Department of Ward 3, Cancer Hospital Affiliated to Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China
    2. Department of Traditional Chinese Medicine, Second Hospital Affiliated to Air Force Medical University, Xi’an 710038, China
    3. First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
    4. Department of Integrated Chinese and Western Medicine, Cancer Hospital, University of Chinese Academy of Science, Hangzhou 310022, China
    5. Department of Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, China
  • Received:2021-11-12 Published:2022-12-01
  • Corresponding author: Yong Guo
引用本文:

张锦, 郑瑾, 叶陈晓, 陈海滔, 李欣荣, 肖海娟, 郭勇. 基于糖酵解相关基因模型的乳腺癌患者预后及免疫功能综合分析[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 336-345.

Jin Zhang, Jin Zheng, Chenxiao Ye, Haitao Chen, Xinrong Li, Haijuan Xiao, Yong Guo. Comprehensive analysis of prognosis and immune function of breast cancer patients based on glycolysis related gene model[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(06): 336-345.

目的

探讨肿瘤有氧糖酵解对乳腺癌患者预后及其免疫微环境的影响。

方法

从癌症基因组图谱(TCGA)数据库中获取1988年1月至2013年12月1 097例乳腺癌组织及112例癌旁正常组织的mRNA表达谱和相应临床数据。利用基因集富集分析(GSEA)软件筛选具有显著差异性的糖酵解相关基因(GRG)。利用单/多因素Cox回归分析及最小绝对收缩和选择算法(LASSO)筛选出与OS相关的GRG后生成6-GRG模型并绘制列线图。按模型算得中位风险值划分高/低风险组,提取不同组患者的相关GRG表达量后生成热图并进行了Kaplan-Meier生存分析。受试者操作特征(ROC)曲线分析及校准图用以验证模型准确性。用实时荧光定量PCR分析三阴性乳腺癌细胞系MDA-MB-231及正常人乳腺上皮细胞系MCF-10A中相关GRG的表达量。最后将不同风险组的差异表达基因(DEG)进行基因本体论(GO)及京都基因与基因组百科全书(KEGG)分析及免疫微环境分析。

结果

共有6个GRG与OS相关,包括CACNA1H(HR=1.12,95%CI:1.03~1.20,P=0.009)、SDC1(HR=1.22,95%CI:1.06~1.40,P=0.008)、SDC3(HR=0.74,95%CI:0.61~0.90,P=0.003)、NUP43(HR=1.42,95%CI:1.07~1.90,P=0.015)、PGK1(HR=1.74,95%CI:1.36~2.20,P<0.001),CHST1(HR=1.14,95%CI:1.03~1.30,P=0.009),从而构建了6-GRG预后模型。根据模型测算的中位风险值,分为低风险组(n=576)和高风险组(n=521)。基因表达热图发现高风险组中SDC3表达减少,其余5个基因表达增加。生存分析发现低风险组患者的总生存率高于高风险组(χ2=7.314,P<0.001),低风险组与高风险组患者的总生存期分别为(17.23±0.89)年和(8.75±1.71)年。校准图显示该模型对患者1、3、5年OS的预测准确率曲线与理想曲线(45度角灰线)贴合。ROC曲线显示,乳腺癌患者1、3、5年OS的曲线下面积分别为0.68、0.71和0.72,提示本模型具有较好的预测精准性。相较于正常乳腺细胞MCF-10A,乳腺癌MDA-MB-231细胞中CACNA1H、SDC1、NUP43、CHST1、PGK1均表达增高(F=15.36、30.73、1.08、14.92、12.93,P均<0.050),而SDC3的表达减少(F=17.50,P=0.038)。GO及KEGG结果显示不同风险组中DEG多在免疫学功能或通路显著富集。低风险组患者的正性免疫细胞比例高于高风险组,包括初始B细胞[0.037(0.011,0.095)比0.031(0.004,0.069),Z=-3.928,P=0.012]、记忆性B细胞[0.010(0.002,0.104)比0.004(0.001,0.411), Z=-5.175,P<0.001]、CD8+T细胞[0.103(0.077,0.329)比0.073(0.012,0.136),Z=-4.904,P<0.001]、滤泡辅助性T细胞[0.068(0.000,0.117)比0.057(0.001,0.128),Z=-2.363,P<0.001]、γδT细胞[0.017(0.000,0.180)比0.010(0.000,0.140),Z=-1.491,P=0.001]、活化自然杀伤细胞[0.031(0.000,0.141)比0.021(0.000,0.099),Z=-1.667,P<0.001]、单核细胞[0.017(0.000,0.101)比0.015(0.000,0.085),Z=-1.093,P=0.047]、中性粒细胞[0.048(0.011,0.122)比0.021(0.008,0.069),Z=-2.776,P<0.001]。

结论

6-GRG预后模型具有良好的预测效能,乳腺癌患者的高糖酵解水平与不良预后及抗肿瘤免疫的功能下降密切相关。

Objective

To investigate the effect of tumor aerobic glycolysis on the prognosis and immune microenvironment of breast cancer patients.

Methods

The mRNA expression profiles of 1 097 cases of breast cancer tissues and 112 cases of normal adjacent tissues and corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) database from January 1988 to December 2013. The gene set engineering analysis (GSEA) software was used to screen out glycolysis-related genes (GRGs) with a significant difference. The single/multiple factor Cox regression analysis and the least absolute contraction and selection algorithm (LASSO) regression method were used to find GRGs related to OS, and then the 6-GRG model was generated and the nomogram was drawn. The patients were divided into high risk and low risk groups according to the median risk value of the model. The expression of related GRGs in different groups was extracted to generate heat maps and the Kaplan-Meier method was conducted for survival analysis. The receiver operating characteristic (ROC) curve analysis and calibration chart were used to verify the accuracy of the model, and single/multiple factor regression analysis is used to judge the independence of the model. The validity of the model was also verified by RT qPCR cell experiment. Finally, GO, KEGG analysis and immune microenvironment analysis were conducted for differentially expressed genes(DEGs) of different risk groups.

Results

Six GRGs were significantly related with OS, including CACNA1H (HR=1.12, 95%CI: 1.03-1.20, P=0.009), SDC1 (HR=1.22, 95%CI: 1.06-1.40, P=0.008), SDC3 (HR=0.74, 95%CI: 0.61-0.90, P=0.003), NUP43 (HR=1.42, 95%CI: 1.07-1.90, P=0.015), PGK1 (HR=1.74, 95%CI: 1.36-2.20, P<0.001), CHST1(HR=1.14, 95%CI: 1.03-1.30, P=0.009). Thus, we established a prognostic model of 6-GRG. According to the median risk value measured by the model, the patients were divided into low-risk group (n=576) and high-risk groups (n=521). The heat map showed that the expression of SDC3 in high-risk group decreased, and the expression of other 5 genes increased. The survival analysis showed that the overall survival rate of patients in low-risk group was significantly higher than that in high-risk group (χ2=7.314, P<0.001), and the overall survival of patients was (17.23±0.89) years in low-risk group and (8.75±1.71) years and high-risk group. The calibration plot shows that the predictive curve of the model for 1-, 3- and 5-year OS fitted the ideal curve (gray line at 45-degree angle). The ROC curve showed that the area under the curve (AUC)of 1-, 3-and 5-year OS was 0.68, 0.71 and 0.72, respectively, indicating a good prediction accuracy of this model. Compared with normal breast cell line MCF-10A, the expression of CACNA1H, SDC1, NUP43, CHST1 and PGK1 in breast cancer cell line MDA-MB-231 significantly increased (F=15.36, 30.73, 1.08, 14.92, 12.93, all P<0.050), while the expression of SDC3 significantly decreased (F=17.50, P=0.038). The GO and KEGG analysis indicated that most of DEGs in different risk groups were significantly enriched in immunological functions or pathways. The patients in low-risk group had significantly higher proportion of positive immune cells compared with high-risk group, including initial B cells [0.037 (0.011, 0.095) vs 0.031 (0.004, 0.069), Z=-3.928, P=0.012], memory B cells [0.010 (0.002, 0.104) vs 0.004 (0.001, 0.411), Z=-5.175, P<0.001], CD8+ T cells [0.103 (0.077, 0.329) vs 0.073 (0.012, 0.136), Z=-4.904, P<0.001], follicular helper T cells [0.068 (0.000, 0.117) vs 0.057(0.001, 0.128), Z=-2.363, P<0.001], γδ T cells [0.017 (0.000, 0.180) vs 0.010 (0.000, 0.140) Z=-1.491, P=0.001], activated natural killer cells [0.031 (0.000, 0.141) vs 0.021 (0.000, 0.099), Z=-1.667, P<0.001], monocytes [0.017 (0.000, 0.101) vs 0.015 (0.000, 0.085), Z=-1.093, P=0.047], and neutrophils [0.048 (0.011, 0.122) vs 0.021 (0.008, 0.069), Z=-2.776, P<0.001].

Conclusions

The 6-GRG prognostic model has good predictive performance. The high glycolysis level in breast cancer patients is closely related to poor prognosis and decreased anti-tumor immunity.

表1 1 097例乳腺癌患者的临床病理特征
表2 实时荧光定量PCR引物序列
表3 TCGA数据库中1 097例乳腺癌样本的基因集富集分析结果
图1 糖酵解相关预测模型的LASSO回归分析 a图所示GRG的切点优化图;b图所示GRG的10倍交叉验证图注:根据图a的红色趋势线的最低区域范围内选定一个合理值12;b图中红色的虚线同折线有12个交点,代表12个基因(PGK1、PGAM1、PMM2、CHST1、GFPT1、SDC1、CHST1、HS6ST2、SDC3、CACNA1H、NUP88、NUP43);GRG为糖酵解相关基因
表4 1 097例乳腺癌患者总生存的多因素Cox回归分析结果
图2 6种糖酵解相关基因在不同风险组乳腺癌患者中的表达热图注:基因表达量的高低用颜色的深浅表示
图3 高/低风险组乳腺癌患者的总生存曲线比较
图4 依据6-GRG预测模型绘制的1 097例乳腺癌患者总生存率预测列线图注:预测模型中的各变量对应第一行得分值,各变量得分值相加获得总得分,总得分下引垂线查得各年生存率
图5 6-GRG预测模型预测1 097例乳腺癌患者总生存率的准确性验证 a、b、c图分别所示患者1、3、5年总生存率预测校准图;d图为患者1、3、5年总生存率的受试者操作特征曲线注:GRG为糖酵解相关基因;AUC为曲线下的面积值;1、3、5年AUC=0.68、0.71、0.72
表5 1 097例乳腺癌患者总生存的单因素与多因素分析
表6 在MDA-MB-231细胞和MCF-10A细胞中6种糖酵解相关基因的表达比较
图6 不同风险组乳腺癌患者差异表达基因的总体分布和富集分析 a图所示为高风险组与低风险组差异表达基因的火山图;b、c、d图分别所示为高风险与低风险组的差异表达基因在分子功能、细胞成分和生物学过程中的富集分析
图7 146个差异表达基因的富集通路分析
表7 不同风险组乳腺癌患者的肿瘤免疫微环境差异分析
表8 不同风险组乳腺癌患者的免疫细胞比例比较[M(P25P75)]
[1]
Hanahan DWeinberg RA. Hallmarks of cancer: the next generation[J]. Cell2011144(5): 646-674.
[2]
Vander Heiden MGCantley LCThompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science2009324(5930): 1029-1033.
[3]
Jiang ZLiu ZLi M,et al. Increased glycolysis correlates with elevated immune activity in tumor immune microenvironment[J]. EBioMedicine201942: 431-442.
[4]
Justus CSanderlin EYang L. Molecular connections between cancer cell metabolism and the tumor microenvironment[J].Int J Mol Sci201516(12): 11 055-11 086.
[5]
Ganapathy-Kanniappan S. Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities[J]. Biochim Biophys Acta Rev Cancer20171868(1): 212-220.
[6]
Demichele AYee DEsserman L. Mechanisms of resistance to neoadjuvant chemotherapy in breast cancer[J]. N Engl J Med2017377(23): 2287-2289.
[7]
Bao ZLi MWang J,et al. Prognostic value of a nine-gene signature in glioma patients based on mRNA expression profiling[J]. CNS Neurosci Ther, 201420(2): 112-118.
[8]
Hu TZhao GLiu Y,et al. A machine learning approach to differentiate two specific breast cancer subtypes using androgen receptor pathway genes[J]. Technol Cancer Res Treat202120: 2091197508.
[9]
Long MHou WLiu Y,et al. A histone acetylation modulator gene signature for classification and prognosis of breast cancer[J]. Curr Oncol, 202128(1): 928-939.
[10]
FKantor OBao JJaskowiak N,et al. The prognostic value of the AJCC 8th edition staging system for patients undergoing neoadjuvant chemotherapy for breast cancer[J].Ann Surg Oncol202027(2): 352-358.
[11]
Suárez-Fariñas MLowes MAZaba LC,et al. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA)[J]. PLoS One20105(4): e10247.
[12]
Liberzon ASubramanian APinchback R,et al. Molecular signatures database (MSigDB) 3.0[J]. Bioinformatics201127(12): 1739-1740.
[13]
Wang HLengerich BJAragam B,et al. Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data[J]. Bioinformatics201935(7): 1181-1187.
[14]
Hu TChen YLiu Y,et al. Classification of PR-positive and PR-negative subtypes in ER-positive and HER2-negative breast cancers based on pathway scores[J]. BMC Med Res Methodol202121(1):108.
[15]
Núñez ESteyerberg EWNúñez J. Estrategias para la elaboración de modelos estadísticos de regresión [Regression modeling strategies] [J]. Rev Esp Cardiol, 201164(6): 501-507.
[16]
Heagerty PJLumley TPepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker[J]. Biometrics200056(2): 337-344.
[17]
Livak KJSchmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods200125(4): 402-408.
[18]
Yoshihara KShahmoradgoli MMartinez E,et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nat Commun20134: 2612.
[19]
Newman AMLiu CLGreen MR,et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 201512(5): 453-457.
[20]
Fu DHe CWei J,et al. PGK1 is a potential survival biomarker and invasion promoter by regulating the HIF-1α-mediated epithelial-mesenchymal transition process in breast cancer[J]. Cell Phy Biochem201851(5): 2434-2444.
[21]
Van Schaftingen EVeiga-Da-Cunha MLinster CL. Enzyme complexity in intermediary metabolism[J]. J Inherit Metab Dis, 201538(4): 721-727.
[22]
Brown TPGanapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020206:107 451.
[23]
Zhang CGou XHe W,et al. A glycolysis-based 4-mRNA signature correlates with the prognosis and cell cycle process in patients with bladder cancer [J]. Cancer Cell Int, 2020, 20:177.
[24]
Jiang FWu CWang M,et al. Identification of novel cell glycolysis related gene signature predicting survival in patients with breast cancer[J]. Sci Rep2021, 11(1):3986.
[25]
Gaude EFrezza C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival[J]. Nat Commun, 2016, 7:13 041.
[26]
Cui XJing XYi Q,et al. Clinicopathological and prognostic significance of SDC1 overexpression in breast cancer[J]. Oncotarget20178(67): 111 444-111 455.
[27]
Tian CZhou SYi C. High NUP43 expression might independently predict poor overall survival in luminal A and in HER2+ breast cancer[J]. Future Oncol201814(15): 1431-1442.
[28]
Zhao XGraves CAmes SJ,et al. Mechanism of regulation and suppression of melanoma invasiveness by novel retinoic acid receptor-γtarget gene carbohydrate sulfotransferase 10[J]. Cancer Res200969(12): 5218-5225.
[29]
Phan NNWang CChen C,et al. Voltage-gated calcium channels: Novel targets for cancer therapy[J]. Oncol Lett, 201714(2): 2059-2074.
[30]
Bespalov MMSidorova YATumova S,et al. Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin[J]. J Cell Biol2011192(1): 153-169.
[31]
Donnelly RPFinlay DK. Glucose, glycolysis and lymphocyte responses[J]. Mol Immunol201568(2): 513-519.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[3] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[4] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[5] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[8] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[9] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[10] 鲁鑫, 许佳怡, 刘洋, 杨琴, 鞠雯雯, 徐缨龙. 早期LC术与PTCD续贯LC术治疗急性胆囊炎对患者肝功能及预后的影响比较[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 648-650.
[11] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[12] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[13] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要