[1] |
Barrow MA, Martin ME, Coffey A, et al. A functional role for the cancer disparity-linked genes, CRYβB2 and CRYβB2P1, in the promotion of breast cancer [J]. Breast Cancer Res, 2019, 21(1): 105.
|
[2] |
Luo L, Tang H, Ling L, et al. LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer [J]. Oncogene, 2018, 37(47): 6166-6179.
|
[3] |
Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis[J]. Cancer Cell, 2004, 5(4): 365-374.
|
[4] |
Wan L, Lu X, Yuan S, et al. MTDH-SND1 interaction is essential for the expansion and activity of tumor-initiating cells in diverse oncogene- and carcinogen-induced mammary tumors. Cancer Cell, 2014; 26(1): 92-105.
|
[5] |
Chu J. MicroRNA-589 serves as a tumor suppressor microRNA through directly targeting metastasis-associated protein 2 in breast cancer[J]. Oncol Lett, 2019, 18(3): 2232-2239.
|
[6] |
Han X, Guo X, Zhang W, et al. MicroRNA-937 inhibits the malignant phenotypes of breast cancer by directly targeting and downregulating forkhead box Q1[J]. Onco Targets Ther, 2019, 12: 4813-4824.
|
[7] |
Rahimi M, Sharifi-Zarchi A, Zarghami N, et al. Down-regulation of miR-200c and up-regulation of miR-30c target both stemness and metastasis genes in breast cancer[J]. Cell J, 2020, 21(4): 467-478.
|
[8] |
Suzuki K, Takano S, Yoshitomi H, et al. Metadherin promotes metastasis by supporting putative cancer stem cell properties and epithelial plasticity in pancreatic cancer[J]. Oncotarget, 2017, 8(39): 66 098-66 111.
|
[9] |
Shi Y, Jin J, Ji W, Guan X. Therapeutic landscape in mutational triple negative breast cancer [J]. Mol Cancer, 2018, 17: 99.
|
[10] |
Li Z, Qiu Y, Lu W, et al. Immunotherapeutic interventions of triple negative breast cancer[J]. J Transl Med, 2018, 16(1): 147.
|
[11] |
Dhiman G, Srivastava N, Goyal M, et al. Metadherin: a therapeutic target in multiple cancers[J]. Front Oncol, 2019, 9: 349.
|
[12] |
Feng Y, Spezia M, Huang S, et al. Breast cancer d evelopment and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis[J]. Genes Dis, 2018, 5(2): 77-106.
|
[13] |
Kim H, Lin Q, Yun Z. BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors[J]. Sci Rep, 2019,9(1): 9702.
|
[14] |
Ren D, Zhu X, Kong R, et al. Targeting brain-adaptive cancer stem cells prohibits brain metastatic colonization of triple-negative breast cancer[J]. Cancer Res, 2018, 78(8): 2052-2064.
|
[15] |
Sulaiman A, McGarry S, Li L, et al. Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states [J]. Mol Oncol, 2018, 12(4): 423-440.
|
[16] |
Zhu L, Pan R, Zhou D, et al. BCL11A enhances stemness and promotes progression by activating Wnt/β-catenin signaling in breast cancer[J]. Cancer Manag Res, 2019, 11: 2997-3007.
|
[17] |
Yang F, Xiao Z, Zhang S. Knockdown of miR-194-5p inhibits cell proliferation, migration and invasion in breast cancer by regulating the Wnt/β-catenin signaling pathway [J]. Int J Mol Med, 2018, 42(6): 3355-3363.
|
[18] |
Zhu K, Peng Y, Hu J, et al. Metadherin-PRMT5 complex enhances the metastasis of hepatocellular carcinoma through the WNT-β-catenin signaling pathway[J]. Carcinogenesis, 2020, 41(2): 130-138.
|
[19] |
Piasecka D, Braun M, Kordek R, et al. MicroRNA s in regulation of triple-negative breast cancer progression[J]. J Cancer Res Clin Oncol, 2018, 144(8): 1401-1411.
|
[20] |
Kawaguchi T, Yan L, Qi Q, et al. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients[J]. Sci Rep, 2017, 7(1): 15945.
|
[21] |
Ouzounova M, Vuong T, Ancey PB, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells[J]. BMC Genomics, 2013, 14: 139.
|