切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 221 -227. doi: 10.3877/cma.j.issn.1674-0807.2020.04.005

所属专题: 文献

论著

异黏蛋白调控三阴性乳腺癌细胞干性的机制研究
乌帆1, 陈国华2, 张良2, 王耕2, 李文仿2,()   
  1. 1. 442000 湖北 十堰,湖北医药学院附属太和医院乳腺中心;121001 锦州医科大学临床医学院
    2. 442000 湖北 十堰,湖北医药学院附属太和医院乳腺中心
  • 收稿日期:2019-09-13 出版日期:2020-08-01
  • 通信作者: 李文仿
  • 基金资助:
    湖北省十堰市科技局指导项目(17Y17); 湖北省教育厅指导项目(B2019109)

Role of metadherin in regulating stemness of triple negative breast cancer cells and its mechanism

Fan Wu1, Guohua Chen2, Liang Zhang2, Geng Wang2, Wenfang Li2,()   

  1. 1. Breast Disease Center, Taihe Hospital Affiliated to Hubei Medical College, Shiyan 442000, Hubei Province, China; School of Clinical Medicine, Jinzhou Medical University, Jinzhou 121001, China
    2. Breast Disease Center, Taihe Hospital Affiliated to Hubei Medical College, Shiyan 442000, Hubei Province, China
  • Received:2019-09-13 Published:2020-08-01
  • Corresponding author: Wenfang Li
  • About author:
    Corresponding author: Li Wenfang, Email:
引用本文:

乌帆, 陈国华, 张良, 王耕, 李文仿. 异黏蛋白调控三阴性乳腺癌细胞干性的机制研究[J]. 中华乳腺病杂志(电子版), 2020, 14(04): 221-227.

Fan Wu, Guohua Chen, Liang Zhang, Geng Wang, Wenfang Li. Role of metadherin in regulating stemness of triple negative breast cancer cells and its mechanism[J]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(04): 221-227.

目的

研究异黏蛋白(MTDH)对三阴性乳腺癌干性的调控机制,并探讨miR-30a-5p对MTDH的调控作用。

方法

(1)回顾性分析2017年5月至2018年9月湖北医药学院附属太和医院手术治疗的37例三阴性乳腺癌患者的肿瘤组织标本及同期非三阴性乳腺癌手术切除标本37例。采用免疫组织化学方法检测所有标本中MTDH的表达。(2)用定量RT-PCR和Western blot检测MCF-10A、MCF-7、MDA-MB-231、MDA-MB-468 4种细胞系中MTDH的mRNA和蛋白表达。(3)为了探讨MTDH对三阴性乳腺癌细胞干性、细胞增殖及Wnt/β-catenin信号通路的影响,用MTDH的siRNA转染三阴性乳腺癌细胞系MDA-MB-231和MDA-MB-468(siMTDH组),无效干扰RNA转染的细胞作为对照组。用Western blot检测MDA-MB-231、MDA-MB-468细胞系中干细胞标志物sox2、Nanog及CD133相对表达量,用细胞克隆实验观察细胞克隆数,用Western blot检测Wnt/β-catenin信号通路蛋白β-catenin、Myc和cyclin D1的表达。(4)荧光素酶报告实验:为评估miR-30a-5p能否靶向调控MTDH,用MTDH的3′-UTR和miRNA-30a-5p合成含有MTDH 3′-UTR野生型和突变型荧光素酶报告质粒,分别转染HepG2细胞,pGL3空载体转染细胞作为空载体组,24 h后观察荧光。三阴性乳腺癌与非三阴性乳腺癌组织中MTDH蛋白表达比较用t检验。4种细胞系中MTDH mRNA及蛋白表达比较用方差分析。对照组与siMTDH组中sox2、Nanog、CD133、β-catenin、Myc、cyclin D1蛋白表达及细胞克隆数比较用t检验。细胞相对荧光比值比较采用方差分析。组间两两比较采用LSD法。

结果

(1)三阴性乳腺癌组织中MTDH蛋白相对表达量为2.82±1.37,而非三阴性乳腺癌组织为5.65±2.02,差异有统计学意义(t=-7.046, P<0.001)。(2)在4种细胞系(MCF-7、MDA-MB-231、MDA-MB-468及MCF-10A)中,MTDH mRNA表达比较,差异有统计学意义(F=7 155.320, P<0.001)。两两比较结果显示:与正常乳腺细胞(MCF-10A)比较,乳腺癌细胞(MCF-7、MDA-MB-231、MDA-MB-468)中MTDH mRNA表达增加(P均<0.001);与MCF-7比较,MDA-MB-231、MDA-MB-468中的MTDH mRNA表达量更高(P均<0.001);MDA-MB-468中的MTDH mRNA表达低于MDA-MB-231细胞(P<0.001)。4种细胞系中,MTDH蛋白相对表达量比较,差异有统计学意义(F=90.053, P<0.001)。两两比较结果显示:与正常乳腺细胞比较,乳腺癌细胞(MCF-7、MDA-MB-231、MDA-MB-468)中MTDH蛋白相对表达量增加(P均<0.050);与MCF-7比较,MDA-MB-231、MDA-MB-468中的MTDH蛋白相对表达量更高(P均<0.050);MDA-MB-468中的MTDH蛋白相对表达量低于MDA-MB-231细胞(P<0.050)。(3)在三阴性乳腺癌细胞系MDA-MB-231和MDA-MB-468中,对照组与siMTDH组的干细胞标志物sox2、Nanog及CD133相对表达量比较,差异均有统计学意义(MDA-MB-231:1.19±0.10比0.52±0.05,1.16±0.13比0.34±0.03,1.19±0.06比0.54±0.08,t=10.304、10.959、11.700,P=0.001、0.005及P<0.001;MDA-MB-468:1.26±0.05比0.34±0.02,1.19±0.07比0.52±0.04,1.21±0.02比0.37±0.01,t=31.185、15.584、75.001,P均<0.001);对照组与siMTDH组的细胞克隆数比较,差异均有统计学意义(MDA-MB-231:87.33±9.02比33.33±3.51,t=9.664,P=0.001;MDA-MB-468:70.67±4.73比24.33±3.21,t=14.041,P<0.001);对照组与siMTDH组的Wnt/β-catenin信号通路蛋白β-catenin、Myc及cyclin D1蛋白表达比较,差异均有统计学意义(MDA-MB-231:0.26±0.06比0.08±0.01,0.74±0.03比0.32±0.00,0.72±0.01比0.26±0.04,t=5.115、21.222、21.690,P均<0.050;MDA-MB-468:0.33±0.03比0.15±0.06,0.56±0.04比0.22±0.02,0.65±0.02比0.31±0.02,t=4.973、13.969、21.897,P均<0.001)。(4)荧光素酶报告实验结果显示:3组细胞相对荧光比值比较,差异有统计学意义(F=174.189,P<0.001),空载体组与突变型质粒转染组的相对荧光比值均高于野生型质粒转染组(P均<0.001)。

结论

miR-30a-5p可靶向调控MTDH,参与三阴性乳腺癌细胞干性调控,miR-30a-5p/MTDH通路可能是一个新的治疗靶点。

Objective

To investigate the role of metadherin (MTDH) in regulating stem cell characteristics of triple negative breast cancer and its mechanism and explore the regulation of MTDH by miR-30a-5p.

Methods

(1) The tumor tissue specimens of 37 triple-negative breast cancer (TNBC) patients who underwent surgery and 37 non-TNBC tissue specimens in Taihe Hospital Affiliated to Hubei Medical College from May 2017 to September 2018 were collected for a retrospective study. Immunohistochemistry was used to detect the expression of MTDH in all specimens. (2) The mRNA and protein expression of MTDH in four cell lines (MCF-10A, MCF-7, MDA-MB-231 and MDA-MB-468) by quantitative RT-PCR and Western blot. (3)To explore the effect of MTDH on the stemness and proliferation of TNBC cells and the Wnt/ β-catenin signaling pathway, TNBC cell lines MDA-MB-231 and MDA-MB-468 were transfected with MTDH siRNA (siMTDH group), and the cells transfected with invalid interfering RNA served as the control group. The relative expression of stem cell markers sox2, Nanog and CD133 was determined in MDA-MB-231 and MDA-MB-468 cell lines by Western blot. Cell cloning experiments were used to observe the number of cell clones and Western blot was used to detect the expression of the Wnt/β-catenin signaling pathway proteins (β-catenin, Myc and cyclin D1). (4)To investigate the targeted regulation of MTDH by miRNA-30a-5p, the luciferase reporter assay, 3′-UTR of MTDH and miRNA-30a-5p were used to synthesize wild-type and mutant luciferase reporter plasmids containing 3′-UTR of MTDH, and then the HepG2 cells were transfected with wild-type and mutant plasmids, respectively. The HepG2 cells transfected with pGL3 empty vector served as a blank control group. The fluorescence of cells was observed 24 h later. The protein expression of MTDH was compared between TNBC tissues and non-TNBC tissues using t test. The mRNA and protein expression of MTDH was compared among four cell lines using analysis of variance. The protein expression of sox2, Nanog, CD133, β-catenin, Myc, cyclin D1 and the number of cell clones were compared between the control group and the siMTDH group using analysis of variance. The relative fluorescence ratio of cells was compared using analysis of variance. The LSD method was used for pairwise comparison.

Results

The relative expression of MTDH was 2.82±1.37 in TNBC tissue, and 5.65±2.02 in non-TNBC tissue, indicating a significant difference (t=-7.046, P<0.001). MTDH mRNA expression presented a significant difference among the four cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and MCF-10A) (F=7 155.320, P<0.001). Pairwise comparison showed that compared with normal breast cells (MCF-10A), the expression of MTDH mRNA in breast cancer cells (MCF-7, MDA-MB-231, MDA-MB-468) was significantly increased (all P<0.001); compared with MCF-7, the expression of MTDH mRNA in TNBC cell lines MDA-MB-231 and MDA-MB-468 was significantly higher (both P<0.001); the expression of MTDH mRNA in MDA-MB-468 cells was significantly lower than that in MDA-MB-231 cells (P<0.001). Among the above-mentioned four cell lines, the protein expression of MTDH presented a significant difference (F=90.053, P<0.001). Pairwise comparison showed that compared with normal breast cells (MCF-10A), the protein expression of MTDH in breast cancer cells (MCF-7, MDA-MB-231, MDA-MB-468) was significantly increased (all P<0.050); compared with MCF-7, the protein expression of MTDH in TNBC cell lines MDA-MB-231 and MDA-MB-468 was significantly higher (both P<0.050); the protein expression of MTDH in MDA-MB-468 cells was significantly lower than that in MDA-MB-231 cells (P<0.050). In the TNBC cell lines MDA-MB-231 and MDA-MB-468, the relative expression of stem cell markers sox2, Nanog and CD133 showed a significant difference between the control group and the siMTDH group (MDA-MB-231: 1.19±0.10 vs 0.52±0.05, 1.16±0.13 vs 0.34±0.03, 1.19±0.06 vs 0.54±0.08, t=10.304, 10.959, 11.700, P=0.001, 0.005, P<0.001; MDA-MB-468: 1.26±0.05 vs 0.34±0.02, 1.19±0.07 vs 0.52±0.04, 1.21±0.02 vs 0.37±0.01, t=31.185, 15.584, 75.001, all P<0.001). The number of cell clones showed a significant difference between the control group and the siMTDH group (MDA-MB-231: 87.33±9.02 vs 33.33±3.51, t=9.664, P=0.001; MDA-MB-468: 70.67±4.73 vs 24.33±3.21, t=14.041, P<0.001). The expression of β-catenin, Myc and cyclin D1 also showed a significant difference between the control group and the siMTDH group (MDA-MB-231: 0.26±0.06 vs 0.08±0.01, 0.74±0.03 vs 0.32±0.00, 0.72±0.01 vs 0.26±0.04, t=5.115, 21.222, 21.690, all P<0.050; MDA-MB-468: 0.33±0.03 vs 0.15±0.06, 0.56±0.04 vs 0.22±0.02, 0.65±0.02 vs 0.31±0.02, t=4.973, 13.969, 21.897, all P<0.001). The results of the luciferase reporter assay showed that there was a significant difference in relative fluorescence ratios among the three groups (F=174.189, P<0.001); the relative fluorescence ratio in the empty vector group and the mutant plasmid transfection group were significantly higher than that in the wild-type plasmid transfection group (both P<0.001).

Conclusions

With the targeted regulation on MTDH, miR-30a-5p can be involved in regulating the stemness of TNBC. Therefore, miR-30a-5p/MTDH pathway may be a new therapeutic target.

图1 乳腺癌组织中异黏蛋白的免疫组织化学染色(SP ×200) a、b图分别所示异黏蛋白在三阴性乳腺癌与非三阴性乳腺癌组织中的表达
表1 在4种细胞系中异黏蛋白的mRNA表达
表2 在4种细胞系中异黏蛋白相对表达量
表3 三阴性乳腺癌细胞系MDA-MB-231中干细胞标志物sox2、Nanog、CD133的表达
表4 三阴性乳腺癌细胞系MDA-MB-468中干细胞标志物sox2、Nanog、CD133的表达
表5 三阴性乳腺癌细胞系MDA-MB-231、MDA-MB-468的克隆形成数
表6 三阴性乳腺癌细胞系MDA-MB-231、MDA-MB-468中Wnt/β-catenin信号通路蛋白表达
表7 荧光素酶报告质粒转染后HepG2细胞的相对荧光比值
[1]
Barrow MA, Martin ME, Coffey A, et al. A functional role for the cancer disparity-linked genes, CRYβB2 and CRYβB2P1, in the promotion of breast cancer [J]. Breast Cancer Res, 2019, 21(1): 105.
[2]
Luo L, Tang H, Ling L, et al. LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer [J]. Oncogene, 2018, 37(47): 6166-6179.
[3]
Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis[J]. Cancer Cell, 2004, 5(4): 365-374.
[4]
Wan L, Lu X, Yuan S, et al. MTDH-SND1 interaction is essential for the expansion and activity of tumor-initiating cells in diverse oncogene- and carcinogen-induced mammary tumors. Cancer Cell, 2014; 26(1): 92-105.
[5]
Chu J. MicroRNA-589 serves as a tumor suppressor microRNA through directly targeting metastasis-associated protein 2 in breast cancer[J]. Oncol Lett, 2019, 18(3): 2232-2239.
[6]
Han X, Guo X, Zhang W, et al. MicroRNA-937 inhibits the malignant phenotypes of breast cancer by directly targeting and downregulating forkhead box Q1[J]. Onco Targets Ther, 2019, 12: 4813-4824.
[7]
Rahimi M, Sharifi-Zarchi A, Zarghami N, et al. Down-regulation of miR-200c and up-regulation of miR-30c target both stemness and metastasis genes in breast cancer[J]. Cell J, 2020, 21(4): 467-478.
[8]
Suzuki K, Takano S, Yoshitomi H, et al. Metadherin promotes metastasis by supporting putative cancer stem cell properties and epithelial plasticity in pancreatic cancer[J]. Oncotarget, 2017, 8(39): 66 098-66 111.
[9]
Shi Y, Jin J, Ji W, Guan X. Therapeutic landscape in mutational triple negative breast cancer [J]. Mol Cancer, 2018, 17: 99.
[10]
Li Z, Qiu Y, Lu W, et al. Immunotherapeutic interventions of triple negative breast cancer[J]. J Transl Med, 2018, 16(1): 147.
[11]
Dhiman G, Srivastava N, Goyal M, et al. Metadherin: a therapeutic target in multiple cancers[J]. Front Oncol, 2019, 9: 349.
[12]
Feng Y, Spezia M, Huang S, et al. Breast cancer d evelopment and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis[J]. Genes Dis, 2018, 5(2): 77-106.
[13]
Kim H, Lin Q, Yun Z. BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors[J]. Sci Rep, 2019,9(1): 9702.
[14]
Ren D, Zhu X, Kong R, et al. Targeting brain-adaptive cancer stem cells prohibits brain metastatic colonization of triple-negative breast cancer[J]. Cancer Res, 2018, 78(8): 2052-2064.
[15]
Sulaiman A, McGarry S, Li L, et al. Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states [J]. Mol Oncol, 2018, 12(4): 423-440.
[16]
Zhu L, Pan R, Zhou D, et al. BCL11A enhances stemness and promotes progression by activating Wnt/β-catenin signaling in breast cancer[J]. Cancer Manag Res, 2019, 11: 2997-3007.
[17]
Yang F, Xiao Z, Zhang S. Knockdown of miR-194-5p inhibits cell proliferation, migration and invasion in breast cancer by regulating the Wnt/β-catenin signaling pathway [J]. Int J Mol Med, 2018, 42(6): 3355-3363.
[18]
Zhu K, Peng Y, Hu J, et al. Metadherin-PRMT5 complex enhances the metastasis of hepatocellular carcinoma through the WNT-β-catenin signaling pathway[J]. Carcinogenesis, 2020, 41(2): 130-138.
[19]
Piasecka D, Braun M, Kordek R, et al. MicroRNA s in regulation of triple-negative breast cancer progression[J]. J Cancer Res Clin Oncol, 2018, 144(8): 1401-1411.
[20]
Kawaguchi T, Yan L, Qi Q, et al. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients[J]. Sci Rep, 2017, 7(1): 15945.
[21]
Ouzounova M, Vuong T, Ancey PB, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells[J]. BMC Genomics, 2013, 14: 139.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
阅读次数
全文


摘要