切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 179 -181. doi: 10.3877/cma.j.issn.1674-0807.2019.03.009

所属专题: 文献

综述

微RNA-27a在乳腺癌中的研究进展
张萌萌1, 杨海松1, 毛大华1, 李艳文1, 张世泳1,()   
  1. 1. 550004 贵阳,贵州医科大学附属医院乳腺外科
  • 收稿日期:2018-05-31 出版日期:2019-06-01
  • 通信作者: 张世泳
  • 基金资助:
    贵州省科技厅联合基金资助项目(黔科合LH字(2017)7182号); 贵阳市科技局基金资助项目(筑科合同(2018)1-89)

Research advancement of microRNA-27a in breast cancer

Mengmeng Zhang1, Haisong Yang1, Dahua Mao1   

  • Received:2018-05-31 Published:2019-06-01
引用本文:

张萌萌, 杨海松, 毛大华, 李艳文, 张世泳. 微RNA-27a在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2019, 13(03): 179-181.

Mengmeng Zhang, Haisong Yang, Dahua Mao. Research advancement of microRNA-27a in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(03): 179-181.

微RNA(miRNA)是新型基因表达调控小分子,其对肿瘤的调控作用在近年来的研究中备受肯定。miRNA-27a为miRNA家族中的重要成员,高表达于乳腺癌组织中,导致患者预后不良。miRNA-27a能够调控乳腺癌瘤体的血管生成以及乳腺癌细胞的增殖、侵袭和转移等多种生物学行为。此外,其还与乳腺癌的诊断、治疗密切相关。笔者就其在乳腺癌中的研究进展作一综述,以期为乳腺癌的诊断、治疗及预后判断提供新的思路。

表1 乳腺癌细胞系中微RNA-27a的下游靶基因及其调控作用
[1]
Filipowicz W. Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? [J]. Nat Rev Genet, 2008, 9(2): 102-114.
[2]
Fang Z, Du R, Edwards A, et al. The sequence structures of human microRNA molecules and their implications [J]. PLoS One, 2013, 8(1): e54215.
[3]
Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output [J]. Nature, 2008, 455(7209):64-71.
[4]
Bartel DP. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136(2): 215-233.
[5]
Li L, Luo J, Wang B, et al. MicroRNA-124 targets flotillin-1 to regulate proliferation and migration in breast cancer [J]. Mol Cancer, 2013, 12:163.
[6]
Zhu ED, Li N, Li BS, et al. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1 [J]. PLoS One, 2014, 9(8):e106049.
[7]
Liu T, Tang H, Lang Y, et al. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin [J]. Cancer Lett, 2009, 273(2):233-242.
[8]
Piva R, Spandidos DA, Gambari R. From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment[J]. Int J Oncol, 2013, 43(4): 985-994.
[9]
韩晓翠,左晓丽,李敏,等. 微RNA 221/222在乳腺癌中的研究进展[J/CD]. 中华乳腺病杂志(电子版), 2017,11(6): 369-371.
[10]
Kim SY, Kim AY, Lee HW, et al. miRNA-27a is a negative regulator of adipocyte differentiation via suppressing PPAR gamma expression [J]. Biochem Biophys Res Commun, 2010, 392(3): 323-328.
[11]
Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis [J]. FEBS J, 2009, 276(8): 2348-2358.
[12]
Hua K, Chen Y, Chen CF, et al. MicroRNA-23a/27a/24-2 cluster promotes gastric cancer cell proliferation synergistically [J]. Oncol Lett, 2018, 16(2): 2319-2325.
[13]
Feng J, Iwama A, Satake M, et al. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1[J]. Br J Haematol, 2009, 145(3):412-423.
[14]
Mertens-Talcott SU, Chintharlapalli S, Li X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells [J]. Cancer Res, 2007, 67(22): 11 001-11 011.
[15]
Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth[J]. PLoS One, 2008, 3(7): e2557.
[16]
Zhou S, Huang Q, Zheng S, et al. miRNA-27a regulates the sensitivity of breast cancer cells to cisplatin treatment via BAK-SMAC/DIABLO-XIAP axis [J]. Tumour Biol, 2016, 37(5): 6837-6845.
[17]
Ye P, Fang C, Zeng H, et al. Differential microRNA expression profiles in tamoxifen-resistant human breast cancer cell lines induced by two methods [J]. Oncol Lett, 2018, 15(3): 3532-3539.
[18]
Tang W, Zhu J, Su S, et al. MiR-27 as a prognostic marker for breast cancer progression and patient survival [J]. PLoS One, 2012, 7(12): e51702.
[19]
Kong LY, Xue M, Zhang QC, et al. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway[J]. Oncotarget, 2017, 8(9): 15 507-15 519.
[20]
Jurkovicova D, Magyerkova M, Sestakova Z, et al. Evaluation of expression profiles of microRNAs and two target genes, FOXO3a and RUNX2, effectively supports diagnostics and therapy predictions in breast cancer [J]. Neoplasma, 2016, 63(6): 941.
[21]
Gasparini P, Cascione L, Fassan M, et al. microRNA expression profiling identifies a four microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers[J]. Oncotarget, 2014, 5(5): 1174-1184.
[22]
Li M, Han Y, Zhou H, et al. Transmembrane protein 170B is a novel breast tumorigenesis suppressor gene that inhibits the Wnt/β-catenin pathway [J]. Cell Death Dis, 2018, 9(2): 91.
[23]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters [J]. Nat Rev Cancer, 2002, 2(1): 48-58.
[24]
Toscano-Garibay JD, Aquino-Jarquin G. Regulation exerted by miRNAs in the promoter and UTR sequences: MDR1/P-gp expression as a particular case [J]. DNA Cell Biol, 2012, 31(8): 1358-1364.
[25]
Chen Z, Ma T, Huang C, et al. MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells [J]. Cell Signal, 2013, 25(12): 2693-2701.
[26]
Feng DD, Zhang H, Zhang P, et al. Down-regulated miR-331-5p and miRNA-27a are associated with chemotherapy resistance and relapse in leukaemia [J]. J Cell Mol Med, 2011, 15(10): 2164-2175.
[27]
Zhao X, Yang L, Hu J. Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells [J]. J Exp Clin Cancer Res, 2011, 30: 55.
[28]
Li Z, Hu S, Wang J, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells [J]. Gynecol Oncol, 2010, 119(1): 125-130.
[29]
Wu J, Sun Z, Sun H, et al. MicroRNA27a promotes tumorigenesis via targeting AKT in triple negative breast cancer[J]. Mol Med Rep, 2018, 17(1): 562-570.
[30]
Guttilla IK, White BA. Coordinate regulation of FOXO1 by miRNA-27a, miR-96, and miR-182 in breast cancer cells [J]. J Biol Chem, 2009, 284(35): 23 204-23 216.
[31]
Li X, Mertens-Talcott SU, Zhang S, et al. MicroRNA-27a indirectly regulates estrogen receptor alpha expression and hormone responsiveness in MCF-7 breast cancer cells[J]. Endocrinology, 2010, 151(6):2462-2473.
[32]
Mertens-Talcott SU, Noratto GD, Li X, et al. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10 [J]. Mol Carcinog, 2013, 52(8): 591-602.
[33]
Abdelrahim M, Smith R 3rd, Burghardt R, et al. Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells [J]. Cancer Res, 2004, 64(18): 6740-6749.
[34]
Qi J, Yu Y, Akilli Öztürk Ö,et al. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals [J]. Gut, 2015, 65(10): 1690-1701.
[35]
Zhao W, Zhang X, Liu J, et al. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7 [J]. Oncol Rep, 2016, 36(6): 3691-3699.
[36]
Zhao W, Zhang X, Zhou Z, et al. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression [J]. Mol Med Rep, 2018, 17(4): 5202-5212.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 易柏成, 李旭光, 王容容, 王新璇. 数字化3D打印导板应用于上前牙钙化根管治疗2例[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 385-390.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[6] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[7] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[8] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[9] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[10] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[11] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[14] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?