切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 179 -181. doi: 10.3877/cma.j.issn.1674-0807.2019.03.009

所属专题: 文献

综述

微RNA-27a在乳腺癌中的研究进展
张萌萌1, 杨海松1, 毛大华1, 李艳文1, 张世泳1,()   
  1. 1. 550004 贵阳,贵州医科大学附属医院乳腺外科
  • 收稿日期:2018-05-31 出版日期:2019-06-01
  • 通信作者: 张世泳
  • 基金资助:
    贵州省科技厅联合基金资助项目(黔科合LH字(2017)7182号); 贵阳市科技局基金资助项目(筑科合同(2018)1-89)

Research advancement of microRNA-27a in breast cancer

Mengmeng Zhang1, Haisong Yang1, Dahua Mao1   

  • Received:2018-05-31 Published:2019-06-01
引用本文:

张萌萌, 杨海松, 毛大华, 李艳文, 张世泳. 微RNA-27a在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2019, 13(03): 179-181.

Mengmeng Zhang, Haisong Yang, Dahua Mao. Research advancement of microRNA-27a in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(03): 179-181.

微RNA(miRNA)是新型基因表达调控小分子,其对肿瘤的调控作用在近年来的研究中备受肯定。miRNA-27a为miRNA家族中的重要成员,高表达于乳腺癌组织中,导致患者预后不良。miRNA-27a能够调控乳腺癌瘤体的血管生成以及乳腺癌细胞的增殖、侵袭和转移等多种生物学行为。此外,其还与乳腺癌的诊断、治疗密切相关。笔者就其在乳腺癌中的研究进展作一综述,以期为乳腺癌的诊断、治疗及预后判断提供新的思路。

表1 乳腺癌细胞系中微RNA-27a的下游靶基因及其调控作用
[1]
Filipowicz W. Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? [J]. Nat Rev Genet, 2008, 9(2): 102-114.
[2]
Fang Z, Du R, Edwards A, et al. The sequence structures of human microRNA molecules and their implications [J]. PLoS One, 2013, 8(1): e54215.
[3]
Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output [J]. Nature, 2008, 455(7209):64-71.
[4]
Bartel DP. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136(2): 215-233.
[5]
Li L, Luo J, Wang B, et al. MicroRNA-124 targets flotillin-1 to regulate proliferation and migration in breast cancer [J]. Mol Cancer, 2013, 12:163.
[6]
Zhu ED, Li N, Li BS, et al. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1 [J]. PLoS One, 2014, 9(8):e106049.
[7]
Liu T, Tang H, Lang Y, et al. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin [J]. Cancer Lett, 2009, 273(2):233-242.
[8]
Piva R, Spandidos DA, Gambari R. From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment[J]. Int J Oncol, 2013, 43(4): 985-994.
[9]
韩晓翠,左晓丽,李敏,等. 微RNA 221/222在乳腺癌中的研究进展[J/CD]. 中华乳腺病杂志(电子版), 2017,11(6): 369-371.
[10]
Kim SY, Kim AY, Lee HW, et al. miRNA-27a is a negative regulator of adipocyte differentiation via suppressing PPAR gamma expression [J]. Biochem Biophys Res Commun, 2010, 392(3): 323-328.
[11]
Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis [J]. FEBS J, 2009, 276(8): 2348-2358.
[12]
Hua K, Chen Y, Chen CF, et al. MicroRNA-23a/27a/24-2 cluster promotes gastric cancer cell proliferation synergistically [J]. Oncol Lett, 2018, 16(2): 2319-2325.
[13]
Feng J, Iwama A, Satake M, et al. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1[J]. Br J Haematol, 2009, 145(3):412-423.
[14]
Mertens-Talcott SU, Chintharlapalli S, Li X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells [J]. Cancer Res, 2007, 67(22): 11 001-11 011.
[15]
Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth[J]. PLoS One, 2008, 3(7): e2557.
[16]
Zhou S, Huang Q, Zheng S, et al. miRNA-27a regulates the sensitivity of breast cancer cells to cisplatin treatment via BAK-SMAC/DIABLO-XIAP axis [J]. Tumour Biol, 2016, 37(5): 6837-6845.
[17]
Ye P, Fang C, Zeng H, et al. Differential microRNA expression profiles in tamoxifen-resistant human breast cancer cell lines induced by two methods [J]. Oncol Lett, 2018, 15(3): 3532-3539.
[18]
Tang W, Zhu J, Su S, et al. MiR-27 as a prognostic marker for breast cancer progression and patient survival [J]. PLoS One, 2012, 7(12): e51702.
[19]
Kong LY, Xue M, Zhang QC, et al. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway[J]. Oncotarget, 2017, 8(9): 15 507-15 519.
[20]
Jurkovicova D, Magyerkova M, Sestakova Z, et al. Evaluation of expression profiles of microRNAs and two target genes, FOXO3a and RUNX2, effectively supports diagnostics and therapy predictions in breast cancer [J]. Neoplasma, 2016, 63(6): 941.
[21]
Gasparini P, Cascione L, Fassan M, et al. microRNA expression profiling identifies a four microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers[J]. Oncotarget, 2014, 5(5): 1174-1184.
[22]
Li M, Han Y, Zhou H, et al. Transmembrane protein 170B is a novel breast tumorigenesis suppressor gene that inhibits the Wnt/β-catenin pathway [J]. Cell Death Dis, 2018, 9(2): 91.
[23]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters [J]. Nat Rev Cancer, 2002, 2(1): 48-58.
[24]
Toscano-Garibay JD, Aquino-Jarquin G. Regulation exerted by miRNAs in the promoter and UTR sequences: MDR1/P-gp expression as a particular case [J]. DNA Cell Biol, 2012, 31(8): 1358-1364.
[25]
Chen Z, Ma T, Huang C, et al. MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells [J]. Cell Signal, 2013, 25(12): 2693-2701.
[26]
Feng DD, Zhang H, Zhang P, et al. Down-regulated miR-331-5p and miRNA-27a are associated with chemotherapy resistance and relapse in leukaemia [J]. J Cell Mol Med, 2011, 15(10): 2164-2175.
[27]
Zhao X, Yang L, Hu J. Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells [J]. J Exp Clin Cancer Res, 2011, 30: 55.
[28]
Li Z, Hu S, Wang J, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells [J]. Gynecol Oncol, 2010, 119(1): 125-130.
[29]
Wu J, Sun Z, Sun H, et al. MicroRNA27a promotes tumorigenesis via targeting AKT in triple negative breast cancer[J]. Mol Med Rep, 2018, 17(1): 562-570.
[30]
Guttilla IK, White BA. Coordinate regulation of FOXO1 by miRNA-27a, miR-96, and miR-182 in breast cancer cells [J]. J Biol Chem, 2009, 284(35): 23 204-23 216.
[31]
Li X, Mertens-Talcott SU, Zhang S, et al. MicroRNA-27a indirectly regulates estrogen receptor alpha expression and hormone responsiveness in MCF-7 breast cancer cells[J]. Endocrinology, 2010, 151(6):2462-2473.
[32]
Mertens-Talcott SU, Noratto GD, Li X, et al. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10 [J]. Mol Carcinog, 2013, 52(8): 591-602.
[33]
Abdelrahim M, Smith R 3rd, Burghardt R, et al. Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells [J]. Cancer Res, 2004, 64(18): 6740-6749.
[34]
Qi J, Yu Y, Akilli Öztürk Ö,et al. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals [J]. Gut, 2015, 65(10): 1690-1701.
[35]
Zhao W, Zhang X, Liu J, et al. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7 [J]. Oncol Rep, 2016, 36(6): 3691-3699.
[36]
Zhao W, Zhang X, Zhou Z, et al. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression [J]. Mol Med Rep, 2018, 17(4): 5202-5212.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[3] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[4] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[5] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[6] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[7] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[8] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[9] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[13] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要