切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 165 -172. doi: 10.3877/cma.j.issn.1674-0807.2019.03.006

所属专题: 文献

论著

碧萝芷对乳腺癌MCF-7细胞增殖、迁移和转移的影响
杨春姝1, 秦光远1, 郑新宇2,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院肿瘤研究所第一研究室
    2. 110001 沈阳,中国医科大学附属第一医院肿瘤研究所第一研究室;110001 沈阳,中国医科大学附属第一医院乳腺外科
  • 收稿日期:2018-12-20 出版日期:2019-06-01
  • 通信作者: 郑新宇

Effect of pycnogenol on proliferation, migration and metastasis of human breast cancer MCF-7 cells

Chunshu Yang1, Guangyuan Qin1, Xinyu Zheng2,()   

  1. 1. Laboratory No.1 of Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, China
    2. Laboratory No.1 of Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, China; Department of Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang 110001, China
  • Received:2018-12-20 Published:2019-06-01
  • Corresponding author: Xinyu Zheng
  • About author:
    Corresponding author: Zheng Xinyu, Email:
引用本文:

杨春姝, 秦光远, 郑新宇. 碧萝芷对乳腺癌MCF-7细胞增殖、迁移和转移的影响[J/OL]. 中华乳腺病杂志(电子版), 2019, 13(03): 165-172.

Chunshu Yang, Guangyuan Qin, Xinyu Zheng. Effect of pycnogenol on proliferation, migration and metastasis of human breast cancer MCF-7 cells[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(03): 165-172.

目的

探讨抗氧化剂碧萝芷对乳腺癌MCF-7细胞的抑制作用,并对观察碧萝芷对MCF-7细胞的转移和迁移功能的影响。

方法

用10、20、40 μg/ml的碧萝芷处理乳腺癌MCF-7细胞作为实验组,空白对照组只加入DMEM培养基(无血清), MTT法在处理细胞后24、48、72 h于波长490 nm处测定各组吸光度值;用流式细胞仪检测细胞凋亡率;用β-半乳糖苷酶染色法检测MCF-7细胞衰老率;用Transwell小室法分别检测各浓度碧萝芷对乳腺癌MCF-7细胞迁移和侵袭能力的影响;用Western blot法分别检测乳腺癌MCF-7细胞衰老相关蛋白P53、P21、P16、P27、E2F1以及基质金属蛋白酶(matrix metalloproteinase, MMP)-2、MMP-9的表达。细胞迁移、侵袭数目及各种蛋白的表达水平比较采用单因素方差分析,吸光度值比较采用重复测量的方差分析,两两比较采用LSD法。

结果

MTT结果显示,在处理乳腺癌MCF-7细胞24、48、72 h后,各组吸光度值比较,差异有统计学意义(F=149.439, P<0.001),在不同时间点之间比较,差异有统计学意义(F=27.922,P<0.001);分组与时间点之间存在交互作用(F=18.466, P<0.001)。流式细胞仪检测结果显示:空白对照组及10、20、40 μg/ml碧萝芷组的细胞凋亡率分别为(2.36±0.27)%、(6.44±1.43)%、(7.52±2.09)%和(11.68±1.65)%,差异有统计学意义(F=19.143, P<0.001)。β-半乳糖苷酶染色法结果显示:空白对照组和10、20、40 μg/ml碧萝芷组的细胞衰老率分别为(5.35±1.32)%、(20.08±2.14)%、(40.55±4.61)%和(59.26±4.10)%,差异有统计学意义(F=150.150, P<0.001)。Transwell小室结果显示:空白对照组及10、20、40 μg/ml碧萝芷组的迁移细胞数目分别为(41±5)、(27±2)、(19±1)、(11±2)个,差异有统计学意义(F=59.330, P<0.001);侵袭转移的细胞数目分别为(24±4)、(17±1)、(12±2)、(7±2)个,差异也有统计学意义(F=26.230, P<0.001)。Western blot结果显示:碧萝芷可上调P53、P21、P16、P27蛋白表达(F=263.905、424.937、217.515、391.115,P均<0.001),下调E2F1蛋白的表达(F=64.003,P<0.001);同时,各组MCF-7细胞中的MMP-2及MMP-9蛋白表达水平明显降低(F=44.104、45.594, P均<0.001)。

结论

碧萝芷可能是以促衰老的方式抑制乳腺癌MCF-7细胞的生长,且能抑制细胞的迁移和转移。

Objective

To investigate the inhibitory effect of the antioxidant pycnogenol on human breast cancer MCF-7 cells, and to observe the effect of pycnogenol on the metastasis and migration of MCF-7 cells.

Methods

MCF-7 cells were treated with 10, 20, 40 μg/ml pycnogenol, respectively, as experimental groups. The control group was only treated with blank DMEM medium (without fetal bovine serum). The optical density of MCF-7 cells at the wavelength of 490 nm was determined by the MTT method at 24, 48 and 72 h after treatment. The apoptosis rate of MCF-7 cells was measured by the flow cytometry. The senescence rate of MCF-7 cells was measured by β-galactosidase staining. The effect of pycnogenol at different concentrations on the migration and invasion of MCF-7 cells were detected by Transwell chamber assay. The expression of senescence-associated proteins P53, P21, P16, P27 and E2F1 in MCF-7 cells was determined by Western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9 was also determined by Western blot analysis. The number of migrated cells and metastatic cells, and the protein expression among four groups were compared by one-factor analysis of variance. The optical density was compared by repeated measurement analysis of variance and pairwise comparison was performed by LSD method.

Results

The result of MTT assay showed that at 24, 48, and 72 h after treatment, the optical density of breast cancer MCF-7 cells was significantly different among four groups (F=149.439, P<0.001) and at different time points (F=27.922, P<0.001); there was an interaction between grouping and time points (F=18.466, P<0.001). The result of flow cytometry showed that the apoptosis rate of MCF-7 cells was (2.36±0.27)%, (6.44±1.43)%, (7.52±2.09)% and (11.68±1.65)% in the blank control group, 10, 20 and 40 μg/ml pycnogenol group, respectively, indicating a significant difference (F=19.143, P<0.001). The result of β-galactosidase staining showed that the senescence rate of MCF-7 cells was (5.35±1.32)%, (20.08±2.14)%, (40.55±4.61)% and (59.26±4.10)% in the blank control group, 10, 20 and 40 μg/ml pycnogenol group, respectively, indicating a significant difference (F=150.150, P<0.001). The result of Transwell chamber assay showed that the number of migrated cells was 41±5, 27±2, 19±1 and 11±2 in the blank control group, 10, 20 and 40 μg/ml pycnogenol group, respectively, indicating a significant difference (F=59.330, P<0.001); the number of metastatic cells was 24±4, 17±1, 12±2 and 7±2, respectively in the blank control group, 10, 20 and 40 μg/ml pycnogenol group, respectively, indicating a significant difference (F=26.230, P<0.001). Western blot results showed that pycnogenol up-regulated the expression of P53, P21, P16 and P27 (F=263.905, 424.937, 217.515, 391.115, all P<0.001), and down-regulated the expression of E2F1 (F=64.003, P<0.001); the expression levels of MMP-2 and MMP-9 in MCF-7 cells were significantly decreased (F=44.104, 45.594, both P<0.001).

Conclusion

Pycnogenol may inhibit the growth of breast cancer MCF-7 cells by promoting the cellular senescence and it can also inhibit the cell migration and metastasis.

表1 采用MTT法检测不同时间点各组乳腺癌MCF-7细胞的吸光度值(±s)
图1 采用流式细胞仪检测各组乳腺癌MCF-7细胞凋亡情况 a~d图分别所示空白对照组及10、20、40 μg/ml碧萝芷组的细胞凋亡检测结果
图2 采用β-半乳糖苷酶染色法观察碧萝芷处理24 h后各组乳腺癌MCF-7细胞形态学特征 a~d图分别所示空白对照组及10、20、40 μg/ml碧萝芷组细胞的β-半乳糖苷酶染色结果(×200)
图3 采用Transwell小室实验检测各组乳腺癌MCF-7细胞的迁移和侵袭能力 a~d图分别所示空白对照组及10、20、40 μg/ml碧萝芷组迁移实验结果(结晶紫 ×200);e~h图分别所示空白对照组及10、20、40 μg/ml碧萝芷组侵袭实验结果(结晶紫 ×200)
表2 各组乳腺癌MCF-7细胞迁移和侵袭能力的比较
图4 采用Western blot检测各组乳腺癌MCF-7细胞中细胞衰老通路重要效应蛋白的表达
表3 各组乳腺癌MCF-7细胞中细胞衰老通路重要效应蛋白的表达
图5 采用Western blot检测各组乳腺癌MCF-7细胞中MMP-2及MMP-9的表达
表4 各组乳腺癌MCF-7细胞中MMP-2及MMP-9的表达
[1]
薛静,王浩. 乳腺癌免疫治疗的研究进展[J/CD]. 中华乳腺病杂志(电子版),2018,12 (1):43-49.
[2]
Huynh HT, Teel RW. Selective induction of apoptosis in human mammary cancer cells (MCF-7) by pycnogenol [J]. Anticancer Res, 2000, 20(4): 2417-2420.
[3]
Ruocco N, Costantini S, Guariniello S, et al. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential[J]. Molecules, 2016, 21(5): E551.
[4]
梁璟慧,吴毓东,杨丽萍.三阴性乳腺癌新辅助化疗的最新进展[J/CD].中华乳腺癌病杂志(电子版),2016, 9(4):270-274.
[5]
马哿,王佳,夏添松,等. 淋巴细胞趋化因子对乳腺癌MCF-7细胞的表柔比星药物敏感性及侵袭转移能力的影响[J/CD]. 中华乳腺病杂志(电子版),2017, 11(6):354-360.
[6]
Collado M, Serrano M. Senescence in tumours: evidence from mice and humans[J]. Nat Rev Cancer, 2010, 10(1): 51-57.
[7]
Nardella C, Clohessy JG, Alimonti A, et al. Pro-senescence therapy for cancer treatment[J]. Nat Rev Cancer, 2011, 11(7): 503-511.
[8]
Campisi J. Replicative senescence: an old lives’tale? [J]. Cell, 1996, 84(4): 497-500.
[9]
Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells[J]. Nat Rev Mol Cell Biol, 2007, 8(9): 729-740.
[10]
Campisi J. Aging, cellular senescence, and cancer[J]. Annu Rev Physiol, 2013, 75: 685-705.
[11]
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging[J]. Cell, 2007, 130(2): 223-233.
[12]
刘翠翠,王光学,赵倩,等. 长链非编码RNA调控乳腺癌增殖、转移、耐药性及乳腺癌干细胞[J/CD]. 中华乳腺病杂志(电子版),2016, 10(5):310-315.
[13]
Rodier F, Campisi J. Four faces of cellular senescence[J]. J Cell Biol, 2011, 192(4): 547-556.
[14]
Coppé JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression[J]. Annu Rev Pathol, 2010, 5: 99-118.
[15]
Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6(12): 2853-2868.
[16]
Rodier F, Coppé JP, Patil CK, et al. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion[J]. Nat Cell Biol, 2009, 11(8): 973-979.
[17]
George BP, Abrahamse H. A review on novel breast cancer therapies: photodynamic therapy and plant derived agent induced cell death mechanisms[J]. Anticancer Agents Med Chem, 2016, 16(7):793-801.
[18]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010[J]. J Nat Prod,2012, 75 (3): 311-335.
[19]
Kaczirek K, Schindl M, Weinhäusel A, et al. Cytotoxic activity of camptothecin and paclitaxel in newly established continuous human medullary thyroid carcinoma cell lines[J]. J Clin Endocrinol Metab, 2004, 89(5):2397-2401.
[20]
Popolo A, Pinto A, Daglia M, et al. Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor[J]. Semin Cancer Biol,2017,46:132-137.
[21]
Aiyer HS, Warri AM, Woode DR, et al. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention[J]. J Agri Food Chem, 2002, 60(23):5693-5708.
[22]
Zhang X, Chen LX, Ouyang L, et al. Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents[J]. Cell Prolif, 2002, 45(5): 466-476.
[23]
Reuben SC, Gopalan A, Petit DM, et al. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer[J]. Mol Nutr Food Res, 2012, 56(1): 14-29.
[24]
Horakova L, Licht A, Sandig G, et al. Standardized extracts of flavonoids increase the viability of PC12 cells treated with hydrogen peroxide: effects on oxidative injury[J]. Arch Toxicol, 2003,77(1):22-29.
[25]
Peng QL, Buz’Zard AR, Lau BH. Pycnogenol protects neurons from amyloid-beta peptide-induced apoptosis[J]. Brain Res Mol Brain Res, 2002,104(1):55-65.
[26]
Roseff SJ. Improvement in sperm quality and function with French maritime pine tree bark extract[J]. J Reprod Med, 2002, 47(10):821-824.
[27]
Rohdewald P. A review of the French maritime pine bark extract (pycnogenol), a herbal medication with a diverse clinical pharmacology[J]. Int J Clin Pharm Ther, 2002, 40(4):158-168.
[28]
Nelson AB, Lau BH, Ide N, et al. Pycnogenol inhibits macrophage oxidative burst, lipoprotein oxidation and hydroxyl radical-induced DNA damage[J]. Drug Dev Indust Pharm, 1998, 24(2): 139-144.
[29]
Wei ZH, Peng QL, Lau BH. Pycnogenol enhances endothelial cell antioxidant defenses[J]. Redox Rep,1997,3(4): 219-224.
[30]
Huang WW, Yang JS, Lin CF, et al. Pycnogenol induces differentiation and apoptosis in human promyeloid leukemia HL-60 cells[J]. Leuk Res, 2005, 29(6): 685-692.
[31]
Buz’Zard AR, Lau BH. Pycnogenol reduces talcinduced neoplastic transformation in human ovarian cell cultures[J]. Phytother Res, 2007, 21(6): 579-586.
[32]
Belcaro G, Cesarone MR, Genovesi D, et al. Pycnogenol may alleviate adverse effects in oncologic treatment[J]. Panminerva Med,2008,50(3):227-234.
[33]
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nat Rev Cancer, 2002, 2(3):161-174.
[34]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52-67.
[35]
Yoon SO, Park SJ, Yun CH, et al. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis[J]. J Biochem Mol Biol, 2003, 36(1):128-137.
[36]
Kim D, Rhee S. Matrix metalloproteinase-2 regulates MDA-MB-231 breast cancer cell invasion induced by active mammalian diaphanous-related formin 1[J]. Mol Med Rep, 2016, 14(1): 277-282.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[4] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[5] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[6] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[7] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[8] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[9] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[10] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[11] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[12] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[13] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[14] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要