切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (01) : 37 -43. doi: 10.3877/cma.j.issn.1674-0807.2019.01.006

所属专题: 文献

论著

基于深度学习技术的乳腺健康智能检测系统在乳腺肿瘤检测中的应用
宋张骏1,(), 王虎霞1, 赵静1, 赵斌1, 周明2, 梁秀芬1, 杨晓民1, 韩丕华1, 陈楠1, 贺赛1, 王柚熙1, 侯艳妮1, 范拥国1   
  1. 1. 710061 西安,陕西省肿瘤医院乳腺中心
    2. 710065 西安百利信息科技有限公司
  • 收稿日期:2018-07-15 出版日期:2019-02-01
  • 通信作者: 宋张骏
  • 基金资助:
    陕西省科技计划资助项目(2018SF-233)

Application of breast health intelligent detection system based on deep learning technology in breast tumor detection

Zhangjun Song1,(), Huxia Wang1, Jing Zhao1, Bin Zhao1, Ming Zhou2, Xiufen Liang1, Xiaomin Yang1, Pihua Han1, Nan Chen1, Sai He1, Youxi Wang1, Yanni Hou1, Yongguo Fan1   

  1. 1. Breast Disease Center, Shaanxi Provincial Tumor Hospital, Xi’an 710061, China
    2. Xi’an Bailead Information Technology Co., Ltd., Xi’an 710065, China
  • Received:2018-07-15 Published:2019-02-01
  • Corresponding author: Zhangjun Song
  • About author:
    Corresponding author: Song Zhangjun, Email:
引用本文:

宋张骏, 王虎霞, 赵静, 赵斌, 周明, 梁秀芬, 杨晓民, 韩丕华, 陈楠, 贺赛, 王柚熙, 侯艳妮, 范拥国. 基于深度学习技术的乳腺健康智能检测系统在乳腺肿瘤检测中的应用[J]. 中华乳腺病杂志(电子版), 2019, 13(01): 37-43.

Zhangjun Song, Huxia Wang, Jing Zhao, Bin Zhao, Ming Zhou, Xiufen Liang, Xiaomin Yang, Pihua Han, Nan Chen, Sai He, Youxi Wang, Yanni Hou, Yongguo Fan. Application of breast health intelligent detection system based on deep learning technology in breast tumor detection[J]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(01): 37-43.

目的

探讨基于深度学习技术的MammoWorks?乳腺健康智能检测系统在乳腺肿瘤检测中的应用价值。

方法

本回顾性研究收集2015年1月至2017年4月期间就诊于陕西省肿瘤医院、乳腺X线BI-RADS 5~6级的患者448例,均手术治疗且临床病理资料齐全。另外用随机数字表法收集同期参加健康体检乳腺X线检查提示BI-RADS 1级的215例正常人群作为对照。以上全部研究对象乳腺X线影像学资料经MammoWorks?乳腺检测系统分析,以患者的病理结果及正常人群的2年随访结果为金标准,分析MammoWorks?乳腺检测系统检测乳腺肿瘤的敏感度、特异度、准确率、阳性预测值、阴性预测值、阳性似然比、阴性似然比及每幅图的假阳性标记数等。率的比较使用χ2检验及Fisher确切概率法,每幅图假阳性标记数比较使用非参数检验(Kruskal-Wallis检验),并使用Kappa检验评价组间变量结果的一致性。

结果

总计纳入663例女性,X线摄片2 652张。总计识别病灶2 284个,真阳性标记929个,假阳性病灶1 355个。真阳性病例333例,真阴性病例126例,假阳性病例89例,假阴性病例115例。MammoWorks?分析敏感度为74.3%(333/448),特异度为58.6%(126/215),阳性预测值为78.9%(333/422),阴性预测值为52.3%(126/241),准确率为69.2%(459/663),阳性似然比为1.80,阴性似然比为0.44。每幅图假阳性标记数为0.50(0.00~0.75)。2种拍摄体位(头尾位和内外侧斜位)下,MammoWorks?系统检测效能差异有统计学意义(Kappa=0.278,P<0.001)。在不同年龄、BI-RADS分级、肿瘤部位、病理分期、病理类型、分子分型的患者中,MammoWorks?检测效能差异无统计学意义(χ2=3.341、1.056、7.103、8.911、5.170、7.803,P均>0.050);在不同乳腺密度、病灶类型、肿瘤直径的患者中,MammoWorks?检测效能差异有统计学意义(χ2=7.985、15.543、18.652,P均<0.050)。每幅图片假阳性标记数仅在不同乳腺密度分组中差异有统计学意义(χ2=15.024,P<0.050)。

结论

基于深度学习技术的MammoWorks?乳腺健康智能检测系统在乳腺肿瘤的辅助诊断中具有一定的应用价值,但其检测效能仍需进一步提高。

Objective

To investigate the value of MammoWorks? system based on deep learning technology in breast tumor detection.

Methods

We enrolled 448 patients with breast lesions at X-ray BI-RADS grade 5-6 in Shaanxi Provincial Tumor Hospital from January 2015 to April 2017. All patients underwent operation, with complete clinical and pathological data. Additionally, using a random number table, 215 healthy people who had physical examination in our hospital at the same period (X-ray BI-RADS grade 1) were randomly enrolled as control and all of them had no breast diseases in the two-year follow-up. The mammographic data of all subjects were analyzed by MammoWorks? system. With the pathological results of patients and the 2-year follow-up results of healthy people as the gold standard, the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, positive likelihood ratio and negative likelihood ratio of MammoWorks? system in the detection of breast tumors were analyzed, as well as the number of false-positive marks in one mammograph. The rate comparison was performed using χ2 test and Fisher exact probability method. The number of false-positive marks in one mammograph was compared using nonparametric test (Kruskal-Wallis test) and Kappa test was used to evaluate the consistency of the results between different subgroups.

Results

Totally 2 652 X-ray photographs from 663 females were analyzed. A total of 2 284 lesions were marked, including 929 true-positive and 1 355 false-positive. There were 333 cases of true-positive, 126 true-negative, 89 false-positive and 115 false-negative. The sensitivity of MammoWorks? system was 74.3%(333/448), specificity 58.6%(126/215), positive predictive value 78.9%(333/422), negative predictive value 52.3%(126/241), accuracy 69.2%(459/663), positive likelihood ratio 1.80 and negative likelihood ratio 0.44. The number of false-positive marks in one mammograph was 0.50(0.00~0.75). The sensitivity of MammoWorks? system showed a significant difference between craniocaudal (CC) view and mediolateral oblique (MLO) view of X-ray (Kappa=0.278, P<0.001). The detection efficiency of MammoWorks? system presented no significant difference in patients with different age, BI-RADS grade, tumor location, pathological stage, pathological type and molecular type (χ2=3.341, 1.056, 7.103, 8.911, 5.170, 7.803, P>0.050), while the detection efficiency of MammoWorks? system was significantly different in patients with different breast density, lesion type, and tumor diameter (χ2=7.985, 15.543, 18.652, P<0.050). The number of false-positive marks in one mammograph presented a significant difference in patients with different breast density (χ2=15.024, P<0.050).

Conclusion

Based on deep learning technology, the MammoWorks? system is helpful in the auxiliary diagnosis of breast tumors, but its detection efficiency still needs to be improved.

表1 MammoWorks?乳腺智能检测系统对448例乳腺肿瘤患者和215例正常人的检测效能分析(例)
图1 MammoWorks?对乳腺沙粒样钙化灶及肿块伴钙化灶的识别及"真实值"标记
图2 MammoWorks?对乳腺肿块的识别及"真实值"标记
图3 MammoWorks?对乳腺沙粒样钙化灶的识别及"真实值"标记
图4 MammoWorks?对乳腺腺体结构扭曲的识别及"真实值"标记
表2 MammoWorks?检测效能与乳腺X线拍摄体位的关系(例)
表3 448例乳腺癌患者临床病理特征与MammoWorks?检测效能的关系
临床病理特征 例数 MammoWorks?检测[例(%)] χ2 P
命中 未命中
年龄 ? ? ? ? ?
? <40岁 57 48(84.2) 9(15.8) 3.341 0.068
? ≥40岁 391 285(72.9) 106(27.1)
X线BI-RADS分级 ? ? ? ? ?
? 5级 393 289(73.5) 104(26.5) 1.056 0.304
? 6级 55 44(80.0) 11(20.0)
乳腺密度 ? ? ? ? ?
? 脂肪型 55 36(65.5) 19(34.5) 7.985 0.046
? 少量腺体型 136 94(69.1) 42(30.9)
? 多量腺体型 90 68(75.6) 22(24.4)
? 致密型 167 135(80.8) 32(19.2)
病灶类型 ? ? ? ? ?
? 肿块 201 136(67.7) 65(32.3) 15.543 0.001
? 钙化 41 33(80.5) 8(19.5)
? 肿块伴钙化 186 153(82.3) 33(17.7)
? 腺体结构扭曲 20 11(55.0) 9(45.0)
肿瘤位置 ? ? ? ? ?
? 外上象限 268 208(77.6) 60(22.4) 7.103 0.131
? 外下象限 37 27(73.0) 10(27.0)
? 内上象限 73 54(74.0) 19(26.0)
? 内下象限 23 13(56.5) 10(43.5)
? 乳头乳晕区 47 31(66.0) 16(34.0)
肿瘤直径 ? ? ? ? ?
? ≤2 cm 153 95(62.1) 58(37.9) 18.652 <0.001
? >2~5 cm 267 214(80.1) 53(19.9)
? >5 cm 28 24(85.7) 4(14.3)
病理分期a ? ? ? ? ?
? 0期 3 3(100) 0(0) 8.911c 0.052
? Ⅰ期 76 47(61.8) 29(38.2)
? Ⅱ期 219 163(74.4) 56(25.6)
? Ⅲ期 135 108(80.0) 27(20.0)
? Ⅳ期 13 9(69.2) 4(30.8)
病理类型 ? ? ? ? ?
? 原位癌 3 3(100) 0(0) 5.170 0.270
? 浸润性导管癌 346 264(76.3) 82(23.7)
? 浸润性小叶癌 20 14(70.0) 6(30.0)
? 浸润性导管-小叶癌 29 20(69.0) 9(31.0)
? 其他类型癌 50 32(64.0) 18(36.0)
浸润性乳腺癌分子分型b ? ? ? ? ?
? luminal A型 94 62(66.0) 32(34.0) 7.803 0.099
? luminal B型HER-2阴性 92 73(79.3) 19(20.7)
? luminal B型HER-2阳性 125 89(71.2) 36(28.8)
? HER-2过表达型 65 54(83.1) 11(16.9)
? 三阴型 67 49(73.1) 18(26.9)
[1]
孔祥溢,王任直. 人工智能及在医疗领域的应用[J]. 医学信息学杂志,2016, 37(11):2-5.
[2]
夏黎明,沈坚,张荣国,等. 深度学习技术在医学影像领域的应用[J]. 协和医学杂志,2018, 9(1):10-14.
[3]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2):87-108.
[4]
Howell A. The emerging breast cancer epidemic: early diagnosis and treatment [J]. Breast Cancer Res, 2010, 12(Suppl 4):1-3.
[5]
康敏,庞轶,李佳圆,等. 乳腺X线在亚洲女性乳腺癌筛查中的准确性评价[J]. 中华肿瘤杂志,2010, 32(3):212-216.
[6]
徐琰,胡保全.浅谈人工智能在乳腺癌领域的应用进展[J/CD].中华乳腺病杂志(电子版), 2017,11(5):257-261.
[7]
Malin JL. Envisioning Watson as a rapid-learning system for oncology [J]. J Oncol Pract, 2013, 9(3):155-157.
[8]
于观贞,魏培莲,陈颖,朱明华.人工智能在肿瘤病理诊断和评估中的应用与思考[J].第二军医大学学报,2017, 38(11):1349-1354.
[9]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639):115.
[10]
Soltaninejad M, Yang G, Lambrou T, et al. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels[J]. Comput Methods Programs Biomed, 2018, 157:69-84.
[11]
Akram S, Javed MY, Hussain A, et al. Intensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniques[J]. J Exp Theor Artif In, 2015, 27(6):737-751.
[12]
Roehrig J, Doi T, Hasegawa A, et al. Digital mammography[M]. Nijmegen: Springer, 1998:395-400.
[13]
Mahersia H, Boulehmi H, Hamrouni K. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: a comparative analysis[J]. Comput Methods Programs Biomed, 2016, 126:46-62.
[14]
Parmeggiani D, Avenia N, Sanguinetti A, et al. Artificial intelligence against breast cancer (A.N.N.E.S-B.C.-Project) [J]. Ann Ital Chir, 2012,83(1):1-5.
[15]
Patel TA, Puppala M, Ogunti RO, et al. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods[J]. Cancer, 2017, 123(1):114-121.
[16]
Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Med Image Anal,2016, 35:303-312.
[17]
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis [J]. Med Image Anal, 2017, 42:60-88.
[18]
LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553):436-444.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[5] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[6] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[7] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[8] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[9] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[10] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[11] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[12] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
阅读次数
全文


摘要