2021 , Vol. 15 >Issue 02: 112 - 116
DOI: https://doi.org/10.3877/cma.j.issn.1674-0807.2021.02.009
基因多态性对芳香化酶抑制剂疗效的影响
Influence of gene polymorphism on efficacy of aromatase inhibitors
陈莉 , 陈雪松 . 基因多态性对芳香化酶抑制剂疗效的影响[J]. 中华乳腺病杂志(电子版), 2021 , 15(02) : 112 -116 . DOI: 10.3877/cma.j.issn.1674-0807.2021.02.009
[1] | Fernández MF, Reina-Pérez I, Astorga JM,et al. Breast cancer and its relationship with the microbiota[J]. Int J Environ Res Public Health,2018,15(8):1747. |
[2] | Peddi PF. Hormone receptor positive breast cancer:state of the art[J]. Curr Opin Obstet Gynecol,2018,30 (1): 51-54. |
[3] | Condorelli R, Vaz-Luis I. Managing side effects in adjuvant endocrine therapy for breast cancer[J]. Expert Rev Anticancer Ther,2018,18(11): 1101-1112. |
[4] | 李焱,鲁海玲,霍明鸣,等. 芳香化酶抑制剂耐药机制研究进展[J/CD]. 中华乳腺病杂志(电子版),2017,11(3):171-174. |
[5] | Borrie AE, Rose RV, Choi YH, et al.Letrozole concentration is associated with CYP2A6 variation but not with arthralgia in patients with breast cancer[J]. Breast Cancer Res Treat,2018,172(2): 371-379. |
[6] | Luo S, Chen G, Truica C,et al. Role of the UGT2B17 deletion in exemestane pharmacogenetics [J]. Pharmacogenomics J,2018,18(2):295-300. |
[7] | Early Breast Cancer Trialists’Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer:patient-level meta-analysis of the randomised trials[J]. Lancet,2015,386(10 001):1341-1352. |
[8] | 霍明鸣,庞慧,李焱,等. 激素受体阳性晚期乳腺癌内分泌治疗的优化选择[J/CD]. 中华乳腺病杂志(电子版) ,2017,11(1): 43-46. |
[9] | Shoombuatong W, Schaduangrat N, Nantasenamat C. Towards understanding aromatase inhibitory activity via QSAR modeling[J]. EXCLI J,2018,17:688-708. |
[10] | Kang H, Xiao X, Huang C, et al. Potent aromatase inhibitors and molecular mechanism of inhibitory action[J]. Eur J Med Chem,2018,143:426-437. |
[11] | Augusto TV, Correia-da-Silva G, Rodrigues CMP, et al. Acquired resistance to aromatase inhibitors: where we stand! [J]. Endocr Relat Cancer,2018,25 (5): R283-R301. |
[12] | Hamadeh IS, Patel JN, Rusin S,et al. Personalizing aromatase inhibitor therapy in patients with breast cancer[J]. Cancer Treat Rev,2018,70:47-55. |
[13] | Elfaki I, Mir R, Almutairi FM, et al. Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis[J]. Asian Pac J Cancer Prev,2018,19 (8): 2057-2070. |
[14] | Liu X, Low SK and Boddy AV.The implications of genetic variation for the pharmacokinetics and pharmacodynamics of aromatase inhibitors[J]. Expert Opin Drug Metab Toxicol,2016,12(8): 851-863. |
[15] | Kaewlert W, Sakonsinsiri C, Namwat N,et al. The importance of CYP19A1 in estrogen receptor-positive cholangiocarcinoma[J]. Horm Cancer,2018,9(6): 408-419. |
[16] | Artigalas O, Vanni T, Hutz MH, et al. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: a systematic review and meta-analysis[J]. BMC Med,2015,13:139 |
[17] | Shao X, Cai J, Zheng Y,et al. S4646 polymorphism in CYP19A1 gene is associated with the effcacy of hormone therapy in early breast cancer[J]. Int J Clin Exp Pathol 2015,8(5):5309-5317. |
[18] | 刘磊,孔凡巍,李庆华,等. CYP19A1基因多态性与晚期乳腺癌阿那曲唑治疗疗效相关性研究[J]. 中国肿瘤,2017,26(9):740-744. |
[19] | Glubb DM, O’Mara TA, Shamsani J, et al. The association of CYP19A1 variation with circulating estradiol and aromatase inhibitor outcome: can CYP19A1 variants be used to predict treatment efficacy? [J]. Front Pharmacol,2017,8:218. |
[20] | Gervasini G, Jara C, Olier C, et al.Polymorphisms in ABCB1 and CYP19A1 genes affect anastrozole plasma concentrations and clinical outcomes in postmenopausal breast cancer patients [J]. Br J Clin Pharmacol,2017,83(3): 562-571. |
[21] | Ferraldeschi R, Arnedos M, Hadfield KD,et al. Polymorphisms of CYP19A1 and response to aromatase inhibitors in metastatic breast cancer patients [J]. Breast Cancer Res Treat,2012,133:1191-1198. |
[22] | Johansson H, Gray KP, Pagani O, et al.Impact of CYP19A1 and ESR1 variants on early-onset side effects during combined endocrine therapy in the TEXT trial [J]. Breast Cancer Res,2016,18 (1): 110. |
[23] | Napoli N, Rastelli A, Ma C, et al. Genetic polymorphism at Val80 (rs700518) of the CYP19A1 gene is associated with body composition changes in women on aromatase inhibitors for ER (+) breast cancer [J]. Pharmacogenet Genomics,2015,25(8): 377-381. |
[24] | Mazzuca F, Botticelli A, Mazzotti E, et al. CYP19A1 genetic polymorphisms rs4646 and osteoporosis in patients treated with aromatase inhibitor-based adjuvant therapy[J]. Eurasian J Med,2016, 48(1): 10-14. |
[25] | Santa-Maria CA, Blackford A, Nguyen AT,et al. Association of variants in candidate genes with lipid profiles in women with early breast cancer on adjuvant aromatase inhibitor therapy[J]. Clin Cancer Res,2015,22(6):1395-1402. |
[26] | Zheng Y, Xu Y, Zhou BY,et al. CYP3A4*1B polymorphism and cancer risk: a meta-analysis based on 55 case-control studies [J]. Ann Clin Lab Sci,2018,48(4):538-545. |
[27] | Zhang Y, Wu J, Zhou Y,et al. Effects of psoralen on the pharmacokinetics of anastrozole in rats[J]. Pharm Biol,2018,56 (1): 433-439. |
[28] | Hertz DL, Kidwell KM, Seewald NJ,et al. Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer[J]. Pharmacogenomics J,2017,17(6): 521-527. |
[29] | Hertz DL, Henry NL, Rae JM. Germline genetic predictors of aromatase inhibitor concentrations, estrogen suppression and drug effcacy and toxicity in breast cancer patients [J]. Pharmacogenomics,2017,18(5):481-499. |
[30] | Tanner JA and Tyndale RF.Variation in CYP2A6 activity and personalized medicine [J]. J Pers Med,2017,7(4):18. |
[31] | Wassenaar CA, Zhou Q, Tyndale RF. CYP2A6 genotyping methods and strategies using real-time and end point PCR platforms [J]. Pharmacogenomics,2016,17(2):147-162. |
[32] | Yang N, Sun R, Liao X, et al.UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine [J]. Pharmacol Res,2017,121:169-183. |
[33] | Abubakar MB, Wei K, Gan SH. The influence of genetic polymorphisms on the efficacy and side effects of anastrozole in postmenopausal breast cancer patients [J]. Pharmacogenet Genomics,2014,24 (12): 575-581. |
[34] | Edavana VK, Dhakal IB, Williams S,et al. Potential role of UGT1A4 promoter SNPs in anastrozole pharmacogenomics [J]. Drug Metab Dispos,2013,41(4):870-877. |
[35] | Gregory BJ, Chen SM, Murphy MA,et al. Impact of the OATP1B1 c.521T>C single nucleotide polymorphism on the pharmacokinetics of exemestane in healthy post-menopausal female volunteers [J]. J Clin Pharm Ther,2017,42 (5): 547-553. |
[36] | Rizner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism [J]. Steroids,2014, 79: 49-63. |
[37] | Platt A, Xia Z, Liu Y,et al. Impact of nonsynonymous single nucleotide polymorphisms on in-vitro metabolism of exemestane by hepatic cytosolic reductases[J]. Pharmacogenet Genomics,2016,26(8): 370-380. |
[38] | Sjostedt N, Holvikari K, Tammela P,et al. Inhibition of breast cancer resistance protein and multidrug resistance associated protein 2 by natural compounds and their derivatives[J]. Mol Pharm,2017,14(1): 135-146. |
[39] | Edavana VK, Penney RB, Yao-Borengasser A,et al. Effect of MRP2 and MRP3 polymorphisms on anastrozole glucuronidation and MRP2 and MRP3 gene expression in normal liver samples[J]. Int J Cancer Res Mol Mech,2015,1(3):10.16966/2381-3318.112. |
[40] | Hertz DL, Barlow WE, Kidwell KM ,et al. Fulvestrant decreases anastrozole drug concentrations when taken concurrently by patients with metastatic breast cancer treated on swog study s0226[J]. Br J Clin Pharmacol,2016, 81(6):1134-1141. |
[41] | Zhang B, Lauschke VM. Genetic variability and population diversity of the human SLCO (OATP) transporter family [J]. Pharmacol Res,2019,139:550-559. |
[42] | Mosly D, Turnbull A, Sims A,et al. Predictive markers of endocrine response in breast cancer [J]. World J Exp Med,2018,8(1): 1-7. |
[43] | Reinert T, Goncalves R, Bines J. Implications of ESR1 mutations in hormone receptor-positive breast cancer [J]. Curr Treat Options Oncol,2018,19 (5): 24. |
[44] | Angus L, Beije N, Jager A,et al. ESR1 mutations: Moving towards guiding treatment decision-making in metastatic breast cancer patients [J]. Cancer Treat Rev,2017,52:33-40. |
[45] | Ho MF, Ingle JN, Bongartz T,et al. TCL1A single-nucleotide polymorphisms and estrogen-mediated toll-like receptor-MYD88-dependent nuclear factor-κB activation: single-nucleotide polymorphism- and selective estrogen receptor modulator-dependent modification of inflammation and immune response [J]. Mol Pharmacol,2017,92(2): 175-184. |
[46] | Ho MF, Lummertz da Rocha E, Zhang C,et al. TCL1A, a novel transcription factor and a coregulator of nuclear factor κB p65: Single nucleotide polymorphism and estrogen dependence [J]. J Pharmacol Exp Ther,2018,365(3): 700-710. |
[47] | Ho MF, Bongartz T, Liu M,et al. Estrogen, SNP-dependent chemokine expression and selective estrogen receptor modulator regulation[J]. Mol Endocrinol,2016,30(3):382-398. |
[48] | St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification [J]. Trends Genet,2015,31(5): 239-251. |
[49] | Ingle JN, Xie F, Ellis MJ,et al. Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a pharmacogenomic basis for the response of breast cancer patients to aromatase inhibitor therapy [J]. Cancer Res,2016,76(23):7012-7023. |
[50] | Fu X, He Y, Wang X,et al. MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome [J]. Cell Physiol Biochem,2018,48(2): 670-682. |
[51] | Chen Z, Yuan YC, Wang Y,et al. Down-regulation of programmed cell death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer [J]. Breast Cancer Res Treat,2015,152(1): 29-39. |
/
〈 |
|
〉 |