切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (05) : 274 -280. doi: 10.3877/cma.j.issn.1674-0807.2024.05.004

论 著

FAM91A1 可能是乳腺癌患者的独立预后因子
王睿1, 邓俊2, 施廷鑫3, 张志兆1, 王成方1, 张毅1, 齐晓伟1,()   
  1. 1.400038 重庆,陆军军医大学第一附属医院乳腺甲状腺外科
    2.400020 重庆,陆军军医大学第一附属医院江北院区心胸外科
    3.400038 重庆,陆军军医大学基础医学院
  • 收稿日期:2023-10-18 出版日期:2024-10-01
  • 通信作者: 齐晓伟
  • 基金资助:
    国家重点研发计划子课题(2022YFC2403401)重庆市杰出青年自然科学基金(CSTB2023NSCQ-JQX0012)重庆市技术创新与应用发展重点项目(CSTB2022TIAD-KPX0168)

FAM91A1 is a potential prognostic factor in breast cancer

Rui Wang1, Jun Deng2, Tingxin Shi3, Zhizhao Zhang1, Chengfang Wang1, Yi Zhang1, Xiaowei Qi1,()   

  1. 1.Department of Breast and Thyroid Surgery, First Affiliated Hospital of Army Medical University, Chongqing 4000038,China
    2.Department of Cardiothoracic Surgery of Jiangbei Campus,First Affiliated Hospital of Army Medical University, Chongqing 4000020, China
    3.School of Basic Medical Sciences, Army Medical University,Chongqing 4000038, China
  • Received:2023-10-18 Published:2024-10-01
  • Corresponding author: Xiaowei Qi
引用本文:

王睿, 邓俊, 施廷鑫, 张志兆, 王成方, 张毅, 齐晓伟. FAM91A1 可能是乳腺癌患者的独立预后因子[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 274-280.

Rui Wang, Jun Deng, Tingxin Shi, Zhizhao Zhang, Chengfang Wang, Yi Zhang, Xiaowei Qi. FAM91A1 is a potential prognostic factor in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(05): 274-280.

目的

研究FAM91A1 表达是否能作为乳腺癌独立预后因子,并探讨其可能的影响机制。

方法

利用UALCAN 数据库中的“TCGA”模块获得FAM91A1 在乳腺癌各个分型中的mRNA 表达,同时从TCGA 数据库获得1101 例乳腺癌患者表达谱及临床数据,将患者按FAM91A1 表达量中位值(37.653)分成低表达组(n =550)和高表达组(n =551)。 使用R 4.4.1 软件包进行生存分析,比较FAM91A1 高、低表达的乳腺癌患者的OS 差异。 采用Cox 回归分析寻找乳腺癌患者OS 的影响因素。 分析FAM91A1 与免疫检查点的相关性,同时使用Spearman 相关性分析描述FAM91A1 与肿瘤突变负荷的相关性。 利用STRING 网站及GEPIA2 数据库构建FAM91A1 相关基因数据集,采用GO 及KEGG 富集分析研究FAM91A1 功能及相关通路,利用MiRTarbase 数据库构建FAM91A1 相关ceRNA 网络并用StarBase 数据库进行验证。

结果

TCGA 数据库中FAM91A1 mRNA 在正常人群、Luminal 型、HER-2 阳性型及三阴型乳腺癌患者中的表达差异有统计学意义(P<0.001)。 生存分析显示, FAM91A1 基因高表达组患者与低表达组患者的OS 比较差异没有统计学意义(HR =1.36,95%CI:0.91 ~2.05,P =0.133)。Cox 回归分析显示年龄(HR=1.453,95%CI:1.128~1.875,P =0.004)、临床分级(HR =1.773,95%CI:1.125~2.794,P=0.014)、M 分期(HR =2.155,95%CI: 1.365 ~3.403,P<0.001)和FAM91A1 表达(HR =1.297,95%CI:1.031~1.631,P =0.026)是1101 例乳腺癌患者OS 的影响因素。 免疫检查点LGLEC15、LAG3、PDCD1、HAVCR2、CD274、PDCD1LG2 表达在FAM91A1 高、低表达组间具有明显差异(P 均<0.001),FAM91A1 表达与肿瘤突变负荷呈正相关(P <0.001)。 GO 功能富集分析发现FAM91A1 相关基因数据集多富集在小分子与脂质等代谢生物过程,在外部封装结构、细胞单元格边沿等细胞成分中,以及酶激活剂活性、GTP 酶激活剂活性、金属肽酶活性等分子功能中。 在KEGG 通路富集分析中,FAM91A1 相关基因多富集在ABC 转运蛋白通路、脂肪酸代谢通路等。 利用在线数据库,共得到1 个miRNA(hsa-mir-15a-5p)和7 个lncRNA(LINC01128、ERI3-IT1、FGD5-AS1、LINC02035、TUG1、XIST、ARMCX5-GPRASP2)组成的FAM91A1 相关ceRNA 网络。

结论

FAM91A1 可能是乳腺癌的独立预后因子,且与免疫浸润、ABC 转运蛋白通路及脂肪酸代谢密切相关。

Objective

To investigate the potential of FAM91A1 as an independent prognostic factor in breast cancer and explore the mechanism.

Methods

The expression of FAM91A1 in various breast cancer subtypes were obtained from the “TCGA” module of the UALCAN database, and the expression profiles and clinical data of 1101 breast cancer patients were downloaded from the TCGA database. The patients were divided into low expression group (n=550) and high expression group (n=551) according to the median value of FAM91A1 expression (37.653). Using R 4.4.1 software, survival analysis was conducted to compare the OS between breast cancer patients with high and low FAM91A1 expression, and Cox regression analysis was used to find the influencing factors of OS in breast cancer patients. The correlation between FAM91A1 and immune checkpoints was analyzed, and Spearman method was used to analyze the correlation between FAM91A1 and tumor mutation burden. The STRING website and GEPIA2 database were used to construct FAM91A1-related gene dataset. The GO and KEGG enrichment analysis were used to find the FAM91A1 function and related pathways. FAM91A1-related ceRNA network was constructed using the MiRTarbase database and validated with the StarBase database.

Results

There was a statistically significant difference in FAM91A1 mRNA expression between normal control, luminal, HER-2-positive, and triple negative breast cancer patients in the TCGA database (P <0.001).The results of the survival analysis indicated no significant difference in OS between FAM91A1 high expression group and low expression group (HR =1.36,95%CI:0.91-2.05,P =0.133). Cox regression analysis revealed that age (HR =1.453,95%CI:1.128-1.875,P =0.004), clinical grade (HR =1.773, 95%CI:1.125-2.794, P =0.014), M stage (HR =2.155, 95% CI:1.365-3.403, P<0.001), and FAM91A1 expression (HR =1.297, 95%CI:1.031-1.631, P =0.026)were independent factor affecting OS in1101 breast cancer patients. The expression of immune checkpoints (LGLEC15, LAG3, PDCD1, HAVCR2,CD274, PDCD1LG2) was significantly different between FAM91A1 expression group and low expression group(all P <0.001). The expression of FAM91A1 was positively correlated with tumor mutation burden (P <0.001). The Gene Ontology (GO) functional enrichment analysis revealed that gene datasets related to FAM91A1 were predominantly enriched in the following metabolic processes (small molecule and lipid metabolism), cellular components (external encapsulated structures, cellular unit cell edges) and molecular functions (enzyme activator activity, GTPase activator activity, and metallopeptidase activity). In the KEGG pathway enrichment analysis, the genes related to FAM91A1 were predominantly enriched in the ABC transporter protein pathway,fatty acid metabolism pathway,etc. By the online database,one miRNA (hsa-mir-15a-5p) and seven lncRNAs (LINC01128, ERI3-IT1, FGD5-AS1, LINC02035, TUG1, XIST, ARMCX5-GPRASP2) were identified within the FAM91A1-associated ceRNA network.

Conclusions

FAM91A1 may serve as an independent prognostic factor in breast cancer, exhibiting a strong correlation with immune infiltration, ABC transporter protein pathway and fatty acid metabolism.

表1 1101 例乳腺癌患者总生存率的单因素、多因素Cox 回归分析
图1 TCGA 数据库中FAM91A1 mRNA 在正常人群、Luminal型、HER-2 阳性型及三阴型乳腺癌患者中的表达差异 注: P<0.001(在线网站未显示相应的统计量)
图2 FAM91A1 高、低表达的乳腺癌患者总生存率比较 注: HR=1.36,95%CI:0.91~2.05,P=0.133
图3 FAM91A1 高、低表达组中不同免疫检查点基因表达差异 注:*表示P<0.05,**表示P<0.01,***表示P<0.001
图4 FAM91A1 表达水平与肿瘤突变负荷的相关性(P=4.39×10-5 注:每个黑点代表1 例患者,红色区域代表FAM91A1 基因表达密度分布锋图,蓝色区域代表肿瘤突变负荷分数密度分布锋图
图5 FAM91A1 相关基因分析 a 图表示利用STRING 工具预测的FAM91A1 基因的互作蛋白;b 图中蓝色表示通过STRING 网站得到的FAM91A1 基因相关的15 个互作蛋白,红色表示通过GEPIA2 数据库获取的与FAM91A1 相关性最强的前100 个基因
图6 FAM91A1 相关基因的GO/KEGG 富集分析结果 a、b、c 图分别显示GO 生物过程、细胞成分及分子功能富集分析;d 图为KEGG 信号通路富集分析 注:横坐标代表富集到某条通路基因的比例,纵坐标代表基因富集通路或功能的名称;每个气泡代表富集到这个通路或功能中的基因数目,气泡越大表示富集到该功能或通路的基因越多,气泡颜色代表校正之后的P 值,颜色越靠近蓝色,P 值越小,代表基因富集在此通路或功能的可能性越大;GO 为基因本体数据库,KEGG 为京都基因与基因组百科全书
图7 基于FAM91A1 基因构建的ceRNA 网络 注:红色图标表示mRNA,绿色图标表示miRNA,黄色图标表示lncRNA
[1]
Bray F,Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263.
[2]
Lei S, Zheng R, Zhang S, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020[J]. Cancer Commun (Lond), 2021,41(11): 1183-1194.
[3]
Jeyabalan J, Aqil F, Munagala R, et al. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer[J]. J Agric Food Chem, 2014, 62(18): 3963-3971.
[4]
Wang J, Xu B, Yuan P, et al. HER2 as a predictive factor for successful neoadjuvant anthracycline chemotherapy of locally advanced and early breast cancer[J]. Int J Biol Markers,2014,29(3):e187-192.
[5]
Pathmanathan N, Balleine RL. Ki67 and proliferation in breast cancer[J]. J Clin Pathol, 2013, 66(6): 512-516.
[6]
Nass N, Walter S, Jechorek D, et al. High neuronatin (NNAT)expression is associated with poor outcome in breast cancer [J].Virchows Arch, 2017, 471(1): 23-30.
[7]
Ryu S, McDonnell K, Choi H, et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration[J]. Cancer Celll, 2013, 23(1): 63-76.
[8]
Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility[J].Cell Adh Migr,2011,5(2):170-180.
[9]
Lv X, Wang Y,Song Y,et al. Association between ALDH1+/CD133+stem-like cells and tumor angiogenesis in invasive ductal breast carcinoma[J]. Oncol Lett, 2016, 11(3): 1750-1756.
[10]
Fromme JC, Munson M. Capturing endosomal vesicles at the Golgi[J].Nat Cell Biol, 2017, 19(12): 1384-1386.
[11]
Barr FA,Short B.Golgins in the structure and dynamics of the Golgi apparatus[J].Curr Opin Cell Biol,2003,15(4):405-413.
[12]
Miao J, Yang Z,Guo W,et al. Integrative analysis of the proteome and transcriptome in gastric cancer identified LRP1B as a potential biomarker[J]. Biomark Med, 2022, 16(15): 1101-1111.
[13]
Abuobeid R, Sánchez-Marco J, Felices MJ, et al. Squalene through its post-squalene metabolites is a modulator of hepatic transcriptome in rabbits[J]. Int J Mol Sci, 2022, 23(8): 4172.
[14]
Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN:a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658.
[15]
Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: An update to the integrated cancer data analysis platform[J].Neoplasia,2022, 25: 18-27.
[16]
Russell B, Melanie AK, Esko AK, et al. Landscape of microsatellite instability across 39 cancer types[J]. JCO Precis Oncol, 2017, 2017:PO.17.00073.
[17]
Kim B, Bae H, Lee H, et al. Proton beams inhibit proliferation of breast cancer cells by altering DNA methylation Status[J]. J Cancer,2016, 7(3): 344-352.
[18]
Lord EM, Penney DP, Sutherland RM, et al. Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo[J]. Virchows Arch B Cell Pathol Incl Mol Pathol, 1979, 31(2): 103-116.
[19]
Bu X, Yao Y, Li X. Immune checkpoint blockade in breast cancer therapy[J]. Adv Exp Med Biol, 2017, 1026: 383-402.
[20]
Wang X, Teng F, Kong L, et al. PD-L1 expression in human cancers and its association with clinical outcomes[J]. Onco Targets Ther,2016, 9: 5023-5039.
[21]
Lynch D, Murphy A. The emerging role of immunotherapy in colorectal cancer[J].Ann Transl Med,2016,4(16):305.
[22]
Salmena L, Poliseno L,Tay Y,et al. A ceRNA hypothesis:the rosetta stone of a hidden RNA language? [J]. Cell,2011,146(3):353-358.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[3] 杨柳, 宋振川, 王新乐. 乳腺癌改良根治术联合背阔肌复位的临床疗效评估[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 269-273.
[4] 季思涵, 唐新宇, 王邦杰, 狄汶洋, 王佳鸣, 查小明, 谢晖, 周文斌, 潘红, 王水. 阿贝西利在激素受体阳性、HER-2 阴性乳腺癌患者中的安全性研究[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 281-286.
[5] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[6] 王聪, 李云涛, 唐甜甜, 王鑫蕊, 吕鑫, 范志刚. 多基因检测对激素受体阳性、HER-2阴性乳腺癌新辅助化疗疗效预测的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 292-296.
[7] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[8] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[9] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[10] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[11] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[12] 顾雯, 凌守鑫, 唐海利, 甘雪梅. 两种不同手术入路在甲状腺乳头状癌患者开放性根治性术中的应用比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 687-690.
[13] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[14] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要