切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 31 -39. doi: 10.3877/cma.j.issn.1674-0807.2024.01.005

论著

NR4A2可作为预测乳腺癌复发转移的早期分子标志物
张元欣1, 黄君华1, 但家强1, 肖成1, 黎君彦1,()   
  1. 1. 611137 成都市老年疾病研究所/成都市肿瘤防治所/成都中医药大学附属成都市第五人民医院甲乳外科
  • 收稿日期:2022-12-21 出版日期:2024-02-01
  • 通信作者: 黎君彦

NR4A2 is an early molecular marker predicting recurrence and metastasis of breast cancer

Yuanxin Zhang1, Junhua Huang1, Jiaqiang Dan1, Cheng Xiao1, Junyan Li1,()   

  1. 1. Department of Thyroid and Breast Surgery, Chengdu Fifth People’s Hospital/ Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu 611137, China.
  • Received:2022-12-21 Published:2024-02-01
  • Corresponding author: Junyan Li
引用本文:

张元欣, 黄君华, 但家强, 肖成, 黎君彦. NR4A2可作为预测乳腺癌复发转移的早期分子标志物[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 31-39.

Yuanxin Zhang, Junhua Huang, Jiaqiang Dan, Cheng Xiao, Junyan Li. NR4A2 is an early molecular marker predicting recurrence and metastasis of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(01): 31-39.

目的

筛选预测乳腺癌复发转移风险的早期分子标志物,以指导临床精准化治疗。

方法

利用GEO数据库中的GSE9574数据集,采用R 4.3.3软件进行差异基因分析、GO/KEGG分析,并采用Cytoscape MCODE方法筛选出与复发转移最相关的种子基因。利用ONCOMINE数据库研究种子基因与乳腺癌临床病理特征之间的关系,并采用Kaplan-Meier分析发研究种子基因与乳腺癌无复发生存率(RFS)、无远处转移生存率(DMFS)和总生存率(OS)等生存指标的相关性。

结果

共筛选出207个差异表达基因,包括128个下调基因和79个上调基因。其中,NR4A2基因因其最高的连接度被识别为关键种子基因。对比乳腺正常组织,NR4A2在乳腺癌组织中为低表达,且在年轻患者、三阴性乳腺癌患者、Ⅳ期及转移乳腺癌患者中表达更低。NR4A2低表达的乳腺癌患者10年RFS和DMFS均低于高表达患者(RFS:13.82%比15.27%,HR=0.81,95%CI:0.73~0.89,P<0.01;DMFS:14.38%比17.96%,HR=0.80,95%CI:0.68~0.93,P<0.01),而2组患者的10年OS率比较,差异无统计学意义(18.17%比26.12%,HR=0.86,95%CI:0.71~1.04,P=0.12)。

结论

NR4A2基因表达变化可能代表乳腺癌复发和转移的早期分子变化,有望成为预测乳腺癌复发和转移风险的分子标志物。

Objective

To discover early molecular markers for predicting the recurrence and metastasis of breast cancer, thereby guiding precise and personalized clinical treatment.

Methods

Utilizing the GSE9574 dataset from the GEO Database, we conducted differential gene analysis and GO/KEGG pathway analyses, using R 4.3.3 software. We applied Cytoscape MCODE to identify key seed genes associated with recurrence and metastasis and explored the relationship between these seed genes and clinicopathological features of breast cancer using the ONCOMINE database. The Kaplan-Meier method was used to examine the association between seed gene expression and recurrence-free survival (RFS), distant metastasis-free survival(DMFS) and overall survival(OS).

Results

Analysis of the GSE9574 dataset revealed 207 differential genes, including 128 down-regulated genes and 79 up-regulated genes. NR4A2 emerged as the seed gene for the highest connectivity. Compared with normal breast tissues, NR4A2 expression was significantly lower in breast cancer tissues, especially in young patients and the patients with triple-negative subtypes, stage IV and metastatic breast cancer. Patients with low NR4A2 expression exhibited significantly lower 10-year RFS compared with patients with high NR4A2 expression (13.82% vs 15.27%, HR=0.81, 95%CI: 0.73-0.89, P<0.01) and 10-year DMFS (14.38% vs 17.96%, HR=0.80, 95%CI: 0.68-0.93, P<0.01). The 10-year overall survival showed no significant difference between two groups (18.17% vs 26.12%, HR=0.86, 95%CI: 0.71-1.04, P=0.12).

Conclusion

High expression of NR4A2 may indicate early molecular alteration in relapsed breast cancer. NR4A2 can be used as an early molecular marker for predicting breast cancer recurrence and metastasis.

图1 GEOquery软件预处理GSE9574数据集后分布图 a图为乳腺癌癌旁正常组织样本与缩乳术后乳腺样本基因RNA表达值分布的小提琴图;b图为乳腺癌癌旁正常组织样本与缩乳术后乳腺样本基因RNA表达的密度曲线图注:a图显示了每个样本的基因表达值的分布范围、密度和中位数,宽度代表了在不同表达值水平上的样本数量;b图的每个曲线代表一个单独的样本,其曲线下面积代表了密度,即在该表达值水平上的基因数量。曲线越宽,表明该表达值范围内的基因越多
图2 GSE9574数据集基因表达分布及差异基因展示图 a图为主成分分析散点图,显示了样本之间基因表达的明显亚群分化,适宜进行后续的差异基因分析;b图为2组样本差异基因表达的火山图,展示了表达上调的79个基因及表达下调的128个基因;c图为表达差异最明显的前50位基因热图注:c图中横坐标为样本编号,纵坐标为差异基因名称,图中红色代表基因上调表达,且红色程度越深代表基因表达越高,蓝色代表基因表达下调,蓝色程度越深代表基因表达越低。样本GSM242014及其左侧的样本(黑线左侧)为癌旁正常乳腺组织,样本GSM242014右侧样本(黑线右侧)为缩乳术后正常乳腺组织,热图展示差异表达最明显的前50位基因热图可良好区分2组样本
图3 GSE9574数据集KEGG/GO基因富集分析结果 a、b、c、d图分别为差异表达最明显的前50位基因KEGG信号通路富集图、GO生物过程富集分析图、GO细胞组分富集分析图和GO分子功能富集分析图注:图中的横坐标代表富集到某条通路上基因的比例,纵坐标为基因富集通路或功能的名称,每个气泡代表富集到这个通路或功能中的基因数目,气泡大小由Count值表示,气泡颜色代表校正之后的P值,颜色越红,P值越小,代表基因富集在此通路上的可能性越大;KEGG为京都基因与基因组百科全书;GO为基因本体数据库
图4 差异表达差异最明显的前50位基因的可视化链接图 a、b、c、d图分别为基因簇1、2、3、4注:红色程度越深代表该节点基因表达差异越大,椭圆形形状越大代表该节点基因连接度越高
图5 NR4A2基因与恶性肿瘤临床病理参数的关系 a图为TP53基因突变患者NR4A2基因表达水平;b图为不同分子分型的乳腺癌NR4A2基因表达水平;c图为不同年龄组乳腺癌患者NR4A2基因表达水平;d图为不同乳腺癌分期患者NR4A2基因表达水平注:TPM为每百万转录本长度标准化的片段数
图6 NR4A2基因表达与乳腺癌预后的关系 a、b、c图分别为NR4A2基因高表达组和低表达组10年无复发生存、无远处转移生存和总生存曲线比较
[1]
Dess RT, Morgan TM, Nguyen PL, et al. Adjuvant versus early salvage radiation therapy following radical prostatectomy for men with localized prostate cancer[J]. Curr Urol Rep, 2017, 18(7): 55.
[2]
Vrieling C, Assele SY, Moser L, et al. The impact of isolated local recurrence on long-term outcome in early-breast cancer patients after breast-conserving therapy[J]. Eur J Cancer, 2021, 155: 28-37.
[3]
Abderrahman B, Jordan VC. Telling details of breast-cancer recurrence[J]. Nature, 2018, 553(7687): 155.
[4]
Duffy M, Evoy D, Mcdermott E. CA 15-3: uses and limitation as a biomarker for breast cancer[J]. Clin Chim Acta, 2010411(23-24):1869-1874.
[5]
Puglisi R, Bellenghi M, Pontecorvi G, et al. SCD5 restored expression favors differentiation and epithelial-mesenchymal reversion in advanced melanoma[J]. Oncotarget, 2018, 9(7): 7567-7581.
[6]
Pandey V, Jain P, Chatterjee S, et al. Variants in exon 2 of MED12 gene causes uterine leiomyoma’s through over-expression of MMP-9 of ECM pathway[J]. Mutat Res, 2023, 828: 111 839.
[7]
Xu S, Liu D, Qin Z, et al. Experimental validation and pan-cancer analysis identified COL10A1 as a novel oncogene and potential therapeutic target in prostate cancer[J]. Aging (Albany NY), 2023, 15(24): 15 134-15 160.
[8]
Barman B, Thakur MK. Neuropsin promotes hippocampal synaptogenesis by regulating the expression and cleavage of L1CAM[J]. J Cell Sci, 2024137(3):jcs261422.
[9]
Shan J, Yuan L, Xiao Q, et al. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells[J]. Cancer Res, 2002, 62(1): 290-294.
[10]
Mirza Z. Integrated high-throughput transcriptomic data identifies survivin as a potential breast cancer therapeutic biomarker[J]. Curr Med Chem, 2024, 31(5): 649-663.
[11]
Ndiaye R, Diop JPD, Dem A, et al. Genetic contribution of breast cancer genes in women of black African origin[J]. Front Genet, 2023, 14: 1 302 645.
[12]
Diehl F, Schmidt K, Choti M, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nat Med, 2008, 14(9): 985-990.
[13]
Roshan-Moniri M, Hsing M, Butler M, et al. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers[J]. Cancer Treat Rev, 2014, 40(10): 1137-1152.
[14]
Di Masi A, De Marinis E, Ascenzi P, et al. Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects[J]. Mol Aspects Med, 2009, 30(5): 297-343.
[15]
Fuentes-Prior P, Rojas A, Hagler A, et al. Diversity of quaternary structures regulates nuclear receptor activities[J]. Trends Biochem Sci, 2019, 44(1): 2-6.
[16]
Li Q, Ke N, Sundaram R, et al. NR4A1, 2, 3--an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis[J]. Histol Histopathol, 2006, 21(5): 533-540.
[17]
Llopis S, Singleton B, Duplessis T, et al. Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer[J]. BMC Cancer, 2013, 13: 139.
[18]
Maira M, Martens C, Philips A, et al. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation[J]. Mol Cell Biol, 1999, 19(11): 7549-7557.
[19]
Wilson T, Fahrner T, Milbrandt J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction[J]. Mol Cell Biol, 1993, 13(9): 5794-5804.
[20]
Mohan H, Aherne C, Rogers A, et al. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer[J]. Clin Cancer Res, 2012, 18(12): 3223-3228.
[21]
Safe S, Karki K. The paradoxical roles of orphan nuclear receptor 4A (NR4A) in cancer[J]. Mol Cancer Res, 2021, 19(2): 180-191.
[22]
Wilson T, Fahrner T, Johnston M, et al. Identification of the DNA binding site for NGFI-B by genetic selection in yeast[J]. Science, 1991, 252(5010): 1296-1300.
[23]
Zhang T, Wang P, Ren H, et al. NGFI-B nuclear orphan receptor Nurr1 interacts with p53 and suppresses its transcriptional activity[J]. Mol Cancer Res, 2009, 7(8): 1408-1415.
[24]
Inamoto T, Czerniak B, Dinney C, et al. Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer[J]. Cancer, 2010, 116(2): 340-346.
[25]
Wang J, Yang J, Zou Y, et al. Orphan nuclear receptor nurr1 as a potential novel marker for progression in human prostate cancer[J]. Asian Pac J Cancer Prev, 2013, 14(3): 2023-2028.
[26]
Liu W, Cao H, Liao S, et al. Dibutyl phthalate disrupts conserved circadian rhythm in Drosophila and human cells[J]. Sci Total Environ, 2021, 783: 147038.
[27]
Karki K, Li X, Jin U, et al. Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas[J]. J Neurooncol, 2020, 146(1): 25-39.
[28]
Abdollahzadeh R, Azarnezhad A, Paknahad S, et al. A proposed TUSC7/miR-211/Nurr1 ceRNET might potentially be disturbed by a cer-SNP rs2615499 in breast cancer[J]. Biochem Genet, 2022, 60(6): 2200-2225.
[29]
Maruyama K, Tsukada T, Bandoh S, et al. Retinoic acids differentially regulate NOR-1 and its closely related orphan nuclear receptor genes in breast cancer cell line MCF-7[J]. Biochem Biophys Res Commun, 1997, 231(2): 417-420.
[30]
Jing C, Fu Y, Zhou C, et al. Hepatic stellate cells promote intrahepatic cholangiocarcinoma progression via NR4A2/osteopontin/Wnt signaling axis[J]. Oncogene, 2021, 40(16): 2910-2922.
[31]
Bian X, Chen H, Yang P, et al. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation[J]. Nat Commun, 2017, 8: 14420.
[32]
Yousefi H, Fong J, Alahari S. NR4A family genes: a review of comprehensive prognostic and gene expression profile analysis in breast cancer[J]. Front Oncol, 2022, 12: 777824.
[1] 戴超超, 蒋天安, 包凌云, 谭艳娟. 乳腺局部结构扭曲病变的X线摄影与自动乳腺容积超声、乳腺增强磁共振的对比研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1237-1241.
[2] 王丹, 朱见, 王军, 刘长瑞, 翟东亮, 刘懿心, 刘源源, 明珊珊, 贺青卿. 术中放射治疗在早期乳腺癌保留乳房手术中的应用[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 11-17.
[3] 薛雨柔, 孔洁, 朱龙玉, 韩慧娜, 张钧, 刘志坤. 局部治疗在乳腺癌术后孤立性局部区域复发中的作用[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 18-24.
[4] 杨立胜, 刘梦鸾, 任维聃, 姜国胜, 刘桂伟. 基于血清肿瘤标志物预测结直肠癌肝转移模型价值分析[J]. 中华普通外科学文献(电子版), 2024, 18(01): 39-43.
[5] 张琳, 李婷. CRIP1在胃癌中的表达及与临床病理指标和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 171-175.
[6] 吴波, 郑永明, 杜世强. SPECT/CT及血清sTg水平预测甲状腺癌术后131I治疗患者淋巴结转移风险的价值分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 212-216.
[7] 陈静, 王晓玲, 安康. 老年进展期胃癌术后腹膜转移的相关因素及治疗进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 225-228.
[8] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[9] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[10] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[11] 苑乐添, 王艺霖, 沈子剑, 闫呈新. 血清GDF15、sB7-H1联合多层螺旋CT灌注成像技术对胃癌患者淋巴结转移的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 62-66.
[12] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[13] 尤亚茹, 刘译阳, 李莉明, 赵帅, 袁梦晨, 黄清博, 高剑波. 多层螺旋CT增强扫描对伴有肝转移的胃肝样腺癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 21-27.
[14] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[15] 王江瑞, 蔡蓓蕾, 王学政, 王磊, 陈同, 张彦琼, 王亚丹. 雷公藤属数据库的开发与应用[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1219-1222.
阅读次数
全文


摘要