切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 31 -39. doi: 10.3877/cma.j.issn.1674-0807.2024.01.005

论著

NR4A2可作为预测乳腺癌复发转移的早期分子标志物
张元欣1, 黄君华1, 但家强1, 肖成1, 黎君彦1,()   
  1. 1. 611137 成都市老年疾病研究所/成都市肿瘤防治所/成都中医药大学附属成都市第五人民医院甲乳外科
  • 收稿日期:2022-12-21 出版日期:2024-02-01
  • 通信作者: 黎君彦

NR4A2 is an early molecular marker predicting recurrence and metastasis of breast cancer

Yuanxin Zhang1, Junhua Huang1, Jiaqiang Dan1, Cheng Xiao1, Junyan Li1,()   

  1. 1. Department of Thyroid and Breast Surgery, Chengdu Fifth People’s Hospital/ Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu 611137, China.
  • Received:2022-12-21 Published:2024-02-01
  • Corresponding author: Junyan Li
引用本文:

张元欣, 黄君华, 但家强, 肖成, 黎君彦. NR4A2可作为预测乳腺癌复发转移的早期分子标志物[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(01): 31-39.

Yuanxin Zhang, Junhua Huang, Jiaqiang Dan, Cheng Xiao, Junyan Li. NR4A2 is an early molecular marker predicting recurrence and metastasis of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(01): 31-39.

目的

筛选预测乳腺癌复发转移风险的早期分子标志物,以指导临床精准化治疗。

方法

利用GEO数据库中的GSE9574数据集,采用R 4.3.3软件进行差异基因分析、GO/KEGG分析,并采用Cytoscape MCODE方法筛选出与复发转移最相关的种子基因。利用ONCOMINE数据库研究种子基因与乳腺癌临床病理特征之间的关系,并采用Kaplan-Meier分析发研究种子基因与乳腺癌无复发生存率(RFS)、无远处转移生存率(DMFS)和总生存率(OS)等生存指标的相关性。

结果

共筛选出207个差异表达基因,包括128个下调基因和79个上调基因。其中,NR4A2基因因其最高的连接度被识别为关键种子基因。对比乳腺正常组织,NR4A2在乳腺癌组织中为低表达,且在年轻患者、三阴性乳腺癌患者、Ⅳ期及转移乳腺癌患者中表达更低。NR4A2低表达的乳腺癌患者10年RFS和DMFS均低于高表达患者(RFS:13.82%比15.27%,HR=0.81,95%CI:0.73~0.89,P<0.01;DMFS:14.38%比17.96%,HR=0.80,95%CI:0.68~0.93,P<0.01),而2组患者的10年OS率比较,差异无统计学意义(18.17%比26.12%,HR=0.86,95%CI:0.71~1.04,P=0.12)。

结论

NR4A2基因表达变化可能代表乳腺癌复发和转移的早期分子变化,有望成为预测乳腺癌复发和转移风险的分子标志物。

Objective

To discover early molecular markers for predicting the recurrence and metastasis of breast cancer, thereby guiding precise and personalized clinical treatment.

Methods

Utilizing the GSE9574 dataset from the GEO Database, we conducted differential gene analysis and GO/KEGG pathway analyses, using R 4.3.3 software. We applied Cytoscape MCODE to identify key seed genes associated with recurrence and metastasis and explored the relationship between these seed genes and clinicopathological features of breast cancer using the ONCOMINE database. The Kaplan-Meier method was used to examine the association between seed gene expression and recurrence-free survival (RFS), distant metastasis-free survival(DMFS) and overall survival(OS).

Results

Analysis of the GSE9574 dataset revealed 207 differential genes, including 128 down-regulated genes and 79 up-regulated genes. NR4A2 emerged as the seed gene for the highest connectivity. Compared with normal breast tissues, NR4A2 expression was significantly lower in breast cancer tissues, especially in young patients and the patients with triple-negative subtypes, stage IV and metastatic breast cancer. Patients with low NR4A2 expression exhibited significantly lower 10-year RFS compared with patients with high NR4A2 expression (13.82% vs 15.27%, HR=0.81, 95%CI: 0.73-0.89, P<0.01) and 10-year DMFS (14.38% vs 17.96%, HR=0.80, 95%CI: 0.68-0.93, P<0.01). The 10-year overall survival showed no significant difference between two groups (18.17% vs 26.12%, HR=0.86, 95%CI: 0.71-1.04, P=0.12).

Conclusion

High expression of NR4A2 may indicate early molecular alteration in relapsed breast cancer. NR4A2 can be used as an early molecular marker for predicting breast cancer recurrence and metastasis.

图1 GEOquery软件预处理GSE9574数据集后分布图 a图为乳腺癌癌旁正常组织样本与缩乳术后乳腺样本基因RNA表达值分布的小提琴图;b图为乳腺癌癌旁正常组织样本与缩乳术后乳腺样本基因RNA表达的密度曲线图注:a图显示了每个样本的基因表达值的分布范围、密度和中位数,宽度代表了在不同表达值水平上的样本数量;b图的每个曲线代表一个单独的样本,其曲线下面积代表了密度,即在该表达值水平上的基因数量。曲线越宽,表明该表达值范围内的基因越多
图2 GSE9574数据集基因表达分布及差异基因展示图 a图为主成分分析散点图,显示了样本之间基因表达的明显亚群分化,适宜进行后续的差异基因分析;b图为2组样本差异基因表达的火山图,展示了表达上调的79个基因及表达下调的128个基因;c图为表达差异最明显的前50位基因热图注:c图中横坐标为样本编号,纵坐标为差异基因名称,图中红色代表基因上调表达,且红色程度越深代表基因表达越高,蓝色代表基因表达下调,蓝色程度越深代表基因表达越低。样本GSM242014及其左侧的样本(黑线左侧)为癌旁正常乳腺组织,样本GSM242014右侧样本(黑线右侧)为缩乳术后正常乳腺组织,热图展示差异表达最明显的前50位基因热图可良好区分2组样本
图3 GSE9574数据集KEGG/GO基因富集分析结果 a、b、c、d图分别为差异表达最明显的前50位基因KEGG信号通路富集图、GO生物过程富集分析图、GO细胞组分富集分析图和GO分子功能富集分析图注:图中的横坐标代表富集到某条通路上基因的比例,纵坐标为基因富集通路或功能的名称,每个气泡代表富集到这个通路或功能中的基因数目,气泡大小由Count值表示,气泡颜色代表校正之后的P值,颜色越红,P值越小,代表基因富集在此通路上的可能性越大;KEGG为京都基因与基因组百科全书;GO为基因本体数据库
图4 差异表达差异最明显的前50位基因的可视化链接图 a、b、c、d图分别为基因簇1、2、3、4注:红色程度越深代表该节点基因表达差异越大,椭圆形形状越大代表该节点基因连接度越高
图5 NR4A2基因与恶性肿瘤临床病理参数的关系 a图为TP53基因突变患者NR4A2基因表达水平;b图为不同分子分型的乳腺癌NR4A2基因表达水平;c图为不同年龄组乳腺癌患者NR4A2基因表达水平;d图为不同乳腺癌分期患者NR4A2基因表达水平注:TPM为每百万转录本长度标准化的片段数
图6 NR4A2基因表达与乳腺癌预后的关系 a、b、c图分别为NR4A2基因高表达组和低表达组10年无复发生存、无远处转移生存和总生存曲线比较
[1]
Dess RT, Morgan TM, Nguyen PL, et al. Adjuvant versus early salvage radiation therapy following radical prostatectomy for men with localized prostate cancer[J]. Curr Urol Rep, 2017, 18(7): 55.
[2]
Vrieling C, Assele SY, Moser L, et al. The impact of isolated local recurrence on long-term outcome in early-breast cancer patients after breast-conserving therapy[J]. Eur J Cancer, 2021, 155: 28-37.
[3]
Abderrahman B, Jordan VC. Telling details of breast-cancer recurrence[J]. Nature, 2018, 553(7687): 155.
[4]
Duffy M, Evoy D, Mcdermott E. CA 15-3: uses and limitation as a biomarker for breast cancer[J]. Clin Chim Acta, 2010411(23-24):1869-1874.
[5]
Puglisi R, Bellenghi M, Pontecorvi G, et al. SCD5 restored expression favors differentiation and epithelial-mesenchymal reversion in advanced melanoma[J]. Oncotarget, 2018, 9(7): 7567-7581.
[6]
Pandey V, Jain P, Chatterjee S, et al. Variants in exon 2 of MED12 gene causes uterine leiomyoma’s through over-expression of MMP-9 of ECM pathway[J]. Mutat Res, 2023, 828: 111 839.
[7]
Xu S, Liu D, Qin Z, et al. Experimental validation and pan-cancer analysis identified COL10A1 as a novel oncogene and potential therapeutic target in prostate cancer[J]. Aging (Albany NY), 2023, 15(24): 15 134-15 160.
[8]
Barman B, Thakur MK. Neuropsin promotes hippocampal synaptogenesis by regulating the expression and cleavage of L1CAM[J]. J Cell Sci, 2024137(3):jcs261422.
[9]
Shan J, Yuan L, Xiao Q, et al. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells[J]. Cancer Res, 2002, 62(1): 290-294.
[10]
Mirza Z. Integrated high-throughput transcriptomic data identifies survivin as a potential breast cancer therapeutic biomarker[J]. Curr Med Chem, 2024, 31(5): 649-663.
[11]
Ndiaye R, Diop JPD, Dem A, et al. Genetic contribution of breast cancer genes in women of black African origin[J]. Front Genet, 2023, 14: 1 302 645.
[12]
Diehl F, Schmidt K, Choti M, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nat Med, 2008, 14(9): 985-990.
[13]
Roshan-Moniri M, Hsing M, Butler M, et al. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers[J]. Cancer Treat Rev, 2014, 40(10): 1137-1152.
[14]
Di Masi A, De Marinis E, Ascenzi P, et al. Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects[J]. Mol Aspects Med, 2009, 30(5): 297-343.
[15]
Fuentes-Prior P, Rojas A, Hagler A, et al. Diversity of quaternary structures regulates nuclear receptor activities[J]. Trends Biochem Sci, 2019, 44(1): 2-6.
[16]
Li Q, Ke N, Sundaram R, et al. NR4A1, 2, 3--an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis[J]. Histol Histopathol, 2006, 21(5): 533-540.
[17]
Llopis S, Singleton B, Duplessis T, et al. Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer[J]. BMC Cancer, 2013, 13: 139.
[18]
Maira M, Martens C, Philips A, et al. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation[J]. Mol Cell Biol, 1999, 19(11): 7549-7557.
[19]
Wilson T, Fahrner T, Milbrandt J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction[J]. Mol Cell Biol, 1993, 13(9): 5794-5804.
[20]
Mohan H, Aherne C, Rogers A, et al. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer[J]. Clin Cancer Res, 2012, 18(12): 3223-3228.
[21]
Safe S, Karki K. The paradoxical roles of orphan nuclear receptor 4A (NR4A) in cancer[J]. Mol Cancer Res, 2021, 19(2): 180-191.
[22]
Wilson T, Fahrner T, Johnston M, et al. Identification of the DNA binding site for NGFI-B by genetic selection in yeast[J]. Science, 1991, 252(5010): 1296-1300.
[23]
Zhang T, Wang P, Ren H, et al. NGFI-B nuclear orphan receptor Nurr1 interacts with p53 and suppresses its transcriptional activity[J]. Mol Cancer Res, 2009, 7(8): 1408-1415.
[24]
Inamoto T, Czerniak B, Dinney C, et al. Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer[J]. Cancer, 2010, 116(2): 340-346.
[25]
Wang J, Yang J, Zou Y, et al. Orphan nuclear receptor nurr1 as a potential novel marker for progression in human prostate cancer[J]. Asian Pac J Cancer Prev, 2013, 14(3): 2023-2028.
[26]
Liu W, Cao H, Liao S, et al. Dibutyl phthalate disrupts conserved circadian rhythm in Drosophila and human cells[J]. Sci Total Environ, 2021, 783: 147038.
[27]
Karki K, Li X, Jin U, et al. Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas[J]. J Neurooncol, 2020, 146(1): 25-39.
[28]
Abdollahzadeh R, Azarnezhad A, Paknahad S, et al. A proposed TUSC7/miR-211/Nurr1 ceRNET might potentially be disturbed by a cer-SNP rs2615499 in breast cancer[J]. Biochem Genet, 2022, 60(6): 2200-2225.
[29]
Maruyama K, Tsukada T, Bandoh S, et al. Retinoic acids differentially regulate NOR-1 and its closely related orphan nuclear receptor genes in breast cancer cell line MCF-7[J]. Biochem Biophys Res Commun, 1997, 231(2): 417-420.
[30]
Jing C, Fu Y, Zhou C, et al. Hepatic stellate cells promote intrahepatic cholangiocarcinoma progression via NR4A2/osteopontin/Wnt signaling axis[J]. Oncogene, 2021, 40(16): 2910-2922.
[31]
Bian X, Chen H, Yang P, et al. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation[J]. Nat Commun, 2017, 8: 14420.
[32]
Yousefi H, Fong J, Alahari S. NR4A family genes: a review of comprehensive prognostic and gene expression profile analysis in breast cancer[J]. Front Oncol, 2022, 12: 777824.
[1] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[2] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[3] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[4] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[5] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[6] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[7] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[8] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[9] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[10] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[11] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[12] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[13] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[14] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[15] 丁富贵, 吴泽涛, 董卫国. 家族性腺瘤性息肉病临床特征及生物信息学分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 512-518.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?