切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 309 -313. doi: 10.3877/cma.j.issn.1674-0807.2023.05.010

综述

多肽疫苗治疗乳腺癌的临床研究进展
唐蜜, 蔡江晖, 罗尔丹, 郭文玫, 熊丽玲, 林永红, 邢莎莎, 杨霄()   
  1. 611731 成都,电子科技大学医学院附属医院/成都市妇女儿童中心医院GCP机构
  • 收稿日期:2022-04-12 出版日期:2023-10-01
  • 通信作者: 杨霄
  • 基金资助:
    成都市妇女儿童中心医院院内课题(2022JC01)

Clinical trials on peptide vaccines for breast cancer treatment

Mi Tang, Jianghui Cai, Erdan Luo   

  • Received:2022-04-12 Published:2023-10-01
引用本文:

唐蜜, 蔡江晖, 罗尔丹, 郭文玫, 熊丽玲, 林永红, 邢莎莎, 杨霄. 多肽疫苗治疗乳腺癌的临床研究进展[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(05): 309-313.

Mi Tang, Jianghui Cai, Erdan Luo. Clinical trials on peptide vaccines for breast cancer treatment[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(05): 309-313.

多肽疫苗是根据肿瘤抗原表位进行氨基酸序列合成,从而激发宿主的免疫应答,具有良好的安全性和耐受性。多肽疫苗是乳腺癌免疫治疗的新领域,其临床研究已经取得了一定的成果,但是,目前还没有多肽疫苗获得上市许可。本文回顾了截止2023年1月1日在ClinicalTrials.gov网站上注册的多肽疫苗临床试验,分析了多肽疫苗在乳腺癌治疗中的安全性、有效性。

表1 多肽疫苗用于乳腺癌临床试验的不良事件列表
图1 多肽疫苗联合治疗乳腺癌的临床试验数量注:PD1为程序性死亡受体1;PD-L1为程序性死亡受体-配体1;CTLA4为细胞毒T淋巴细胞相关抗原4
图2 多肽疫苗相应作用靶点的临床试验数量注:VEGFR1为血管内皮生长因子受体1;VEGFR2为血管内皮生长因子受体2;TSA为肿瘤特异性抗原;TACAs为肿瘤相关性糖抗原;HSP70为热休克蛋白70;FBP为叶酸结合蛋白;TAA为肿瘤相关性抗原;FRα为叶酸受体α;TTK为酪氨酸激酶;MAGE-12为黑色素瘤相关抗原12;hTERT为人端粒酶逆转录酶;ESR1为雌激素受体α;ARG1为精氨酸酶1;Survivin为生存素;CEA为癌胚抗原;CTA为肿瘤睾丸抗原
表2 用于治疗三阴性乳腺癌的多肽疫苗临床试验
[17]
Ott PA, Hu Z, Keskin DB, et al. Corrigendum: An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2018, 555(7696): 402.
[18]
Roudko V, Greenbaum B, Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens[J]. Front Immunol, 2020, 11: 27.
[19]
Benedetti R, Dell’Aversana C, Giorgio C, et al. Breast cancer vaccines: new insights[J]. Front Endocrinol (Lausanne), 2017, 8: 270.
[20]
Singh K, Yadav D, Jain M, et al. Immunotherapy for breast cancer treatment: current evidence and therapeutic options[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(2): 212-224.
[21]
Morse MA, Gwin WR, Mitchell DA. Vaccine therapies for cancer: then and now[J]. Target Oncol, 2021, 16(2): 121-152.
[22]
Corti C, Giachetti PPMB, Eggermont AMM, et al. Therapeutic vaccines for breast cancer: has the time finally come? [J]. Eur J Cancer, 2022, 160: 150-174.
[23]
Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566.
[24]
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197-218.
[25]
Nagini S. Breast cancer: current molecular therapeutic targets and new players[J]. Anticancer Agents Med Chem, 2017, 17(2): 152-163.
[26]
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC[J]. Cancers (Basel), 2020, 12(4): 916.
[27]
Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene, 2013, 32(9): 1073-1081.
[28]
Siroy A, Abdul-Karim FW, Miedler J, et al. MUC1 is expressed at high frequency in early-stage basal-like triple-negative breast cancer[J]. Hum Pathol, 2013, 44(10): 2159-2166.
[29]
Zagorac I, Lončar B, Dmitrović B, et al. Correlation of folate receptor alpha expression with clinicopathological parameters and outcome in triple negative breast cancer[J]. Ann Diagn Pathol, 2020, 48: 151596.
[30]
Nooka AK, Wang ML, Yee AJ, et al. Assessment of safety and immunogenicity of PVX-410 vaccine with or without lenalidomide in patients with smoldering multiple myeloma: a nonrandomized clinical trial[J]. JAMA Oncol, 2018, 4(12): e183267.
[31]
Bissanum R, Lirdprapamongkol K, Svasti J, et al. The role of WT1 isoforms in vasculogenic mimicry and metastatic potential of human triple negative breast cancer cells[J]. Biochem Biophys Res Commun, 2017, 494(1-2): 256-262.
[32]
Zhang Y, Yan WT, Yang ZY, et al. The role of WT1 in breast cancer: clinical implications, biological effects and molecular mechanism[J]. Int J Biol Sci, 2020, 16(8): 1474-1480.
[1]
Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215.
[2]
Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines[J]. Int Rev Immunol, 2011, 30(2-3): 150-182.
[3]
Adotévi O, Dosset M, Galaine J, et al. Targeting antitumor CD4 helper T cells with universal tumor-reactive helper peptides derived from telomerase for cancer vaccine[J]. Hum Vaccin Immunother, 2013, 9(5): 1073-1077.
[4]
Li Q, Li Z, Deng N, et al. Built-in adjuvants for use in vaccines[J]. Eur J Med Chem, 2022, 227: 113917.
[5]
Karkada M, Berinstein NL, Mansour M. Therapeutic vaccines and cancer: focus on DPX-0907[J]. Biologics, 2014, 8: 27-38.
[6]
Nezafat N, Ghasemi Y, Javadi G, et al. A novel multi-epitope peptide vaccine against cancer: an in silico approach[J]. J Theor Biol, 2014, 349: 121-134.
[7]
仲丽晴,刘芹,刘宝瑞. 肿瘤光动力免疫治疗的研究进展[J]. 中华肿瘤防治杂志2023, 30(6): 341-346.
[8]
Hutchins LF, Makhoul I, Emanuel PD, et al. Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage Ⅳ breast cancer subjects[J]. Oncotarget, 2017, 8(58): 99 161-99 178.
[9]
Chen X, Yang J, Wang L, et al. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives[J]. Theranostics, 2020, 10(13): 6011-6023.
[10]
Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360.
[11]
Marron T, Kodysh J, Rubinsteyn A, et al. 289 PGV-001: a phase 1 trial of a personalized neoantigen peptide vaccine for the treatment of malignancies in the adjuvant setting[J]. J Immunother Cancer, 2020; 8(Suppl 3): A177.
[12]
Rubinsteyn A, Kodysh J, Hodes I, et al. Computational pipeline for the PGV-001 neoantigen vaccine trial[J]. Front Immunol, 2018, 8: 1807.
[13]
Marron TU, Saxena M, Bhardwaj N, et al. An adjuvant personalized neoantigen peptide vaccine for the treatment of malignancies (PGV-001) [J]. Cancer Res., 202181(13 Suppl):LB048.
[14]
Jou J, Harrington KJ, Zocca MB, et al. The changing landscape of therapeutic cancer vaccines-novel platforms and neoantigen identification[J]. Clin Cancer Res, 2021, 27(3): 689-703.
[15]
贺庆,高华,王军志. 个体化肽治疗性肿瘤疫苗的临床药效学研究分析[J]. 中国新药杂志2021, 30(19): 1729-1737.
[16]
Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662): 222-226.
[33]
Zauderer MG, Tsao AS, Dao T, et al. A randomized phase ii trial of adjuvant galinpepimut-s, WT-1 analogue peptide vaccine, after multimodality therapy for patients with malignant pleural mesothelioma[J]. Clin Cancer Res201723(24):7483-7489.
[34]
Jain AG, Talati C, Pinilla-Ibarz J. Galinpepimut-S (GPS): an investigational agent for the treatment of acute myeloid leukemia[J]. Expert Opin Investig Drugs, 202130(6):595-601.
[35]
McCarthy PM, Clifton GT, Vreeland TJ, et al. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence[J]. Expert Opin Investig Drugs, 2021, 30(1): 5-11.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[7] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[8] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[9] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[10] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[11] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[12] 丁亚琴, 方旭, 戴彦成. 基于紧密型医联体的“一免三优先政策”在基层消化道肿瘤筛查中的应用探讨[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 481-484.
[13] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[14] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?