切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 309 -313. doi: 10.3877/cma.j.issn.1674-0807.2023.05.010

综述

多肽疫苗治疗乳腺癌的临床研究进展
唐蜜, 蔡江晖, 罗尔丹, 郭文玫, 熊丽玲, 林永红, 邢莎莎, 杨霄()   
  1. 611731 成都,电子科技大学医学院附属医院/成都市妇女儿童中心医院GCP机构
  • 收稿日期:2022-04-12 出版日期:2023-10-01
  • 通信作者: 杨霄
  • 基金资助:
    成都市妇女儿童中心医院院内课题(2022JC01)

Clinical trials on peptide vaccines for breast cancer treatment

Mi Tang, Jianghui Cai, Erdan Luo   

  • Received:2022-04-12 Published:2023-10-01
引用本文:

唐蜜, 蔡江晖, 罗尔丹, 郭文玫, 熊丽玲, 林永红, 邢莎莎, 杨霄. 多肽疫苗治疗乳腺癌的临床研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 309-313.

Mi Tang, Jianghui Cai, Erdan Luo. Clinical trials on peptide vaccines for breast cancer treatment[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(05): 309-313.

多肽疫苗是根据肿瘤抗原表位进行氨基酸序列合成,从而激发宿主的免疫应答,具有良好的安全性和耐受性。多肽疫苗是乳腺癌免疫治疗的新领域,其临床研究已经取得了一定的成果,但是,目前还没有多肽疫苗获得上市许可。本文回顾了截止2023年1月1日在ClinicalTrials.gov网站上注册的多肽疫苗临床试验,分析了多肽疫苗在乳腺癌治疗中的安全性、有效性。

表1 多肽疫苗用于乳腺癌临床试验的不良事件列表
图1 多肽疫苗联合治疗乳腺癌的临床试验数量注:PD1为程序性死亡受体1;PD-L1为程序性死亡受体-配体1;CTLA4为细胞毒T淋巴细胞相关抗原4
图2 多肽疫苗相应作用靶点的临床试验数量注:VEGFR1为血管内皮生长因子受体1;VEGFR2为血管内皮生长因子受体2;TSA为肿瘤特异性抗原;TACAs为肿瘤相关性糖抗原;HSP70为热休克蛋白70;FBP为叶酸结合蛋白;TAA为肿瘤相关性抗原;FRα为叶酸受体α;TTK为酪氨酸激酶;MAGE-12为黑色素瘤相关抗原12;hTERT为人端粒酶逆转录酶;ESR1为雌激素受体α;ARG1为精氨酸酶1;Survivin为生存素;CEA为癌胚抗原;CTA为肿瘤睾丸抗原
表2 用于治疗三阴性乳腺癌的多肽疫苗临床试验
[17]
Ott PA, Hu Z, Keskin DB, et al. Corrigendum: An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2018, 555(7696): 402.
[18]
Roudko V, Greenbaum B, Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens[J]. Front Immunol, 2020, 11: 27.
[19]
Benedetti R, Dell’Aversana C, Giorgio C, et al. Breast cancer vaccines: new insights[J]. Front Endocrinol (Lausanne), 2017, 8: 270.
[20]
Singh K, Yadav D, Jain M, et al. Immunotherapy for breast cancer treatment: current evidence and therapeutic options[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(2): 212-224.
[21]
Morse MA, Gwin WR, Mitchell DA. Vaccine therapies for cancer: then and now[J]. Target Oncol, 2021, 16(2): 121-152.
[22]
Corti C, Giachetti PPMB, Eggermont AMM, et al. Therapeutic vaccines for breast cancer: has the time finally come? [J]. Eur J Cancer, 2022, 160: 150-174.
[23]
Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566.
[24]
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197-218.
[25]
Nagini S. Breast cancer: current molecular therapeutic targets and new players[J]. Anticancer Agents Med Chem, 2017, 17(2): 152-163.
[26]
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC[J]. Cancers (Basel), 2020, 12(4): 916.
[27]
Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene, 2013, 32(9): 1073-1081.
[28]
Siroy A, Abdul-Karim FW, Miedler J, et al. MUC1 is expressed at high frequency in early-stage basal-like triple-negative breast cancer[J]. Hum Pathol, 2013, 44(10): 2159-2166.
[29]
Zagorac I, Lončar B, Dmitrović B, et al. Correlation of folate receptor alpha expression with clinicopathological parameters and outcome in triple negative breast cancer[J]. Ann Diagn Pathol, 2020, 48: 151596.
[30]
Nooka AK, Wang ML, Yee AJ, et al. Assessment of safety and immunogenicity of PVX-410 vaccine with or without lenalidomide in patients with smoldering multiple myeloma: a nonrandomized clinical trial[J]. JAMA Oncol, 2018, 4(12): e183267.
[31]
Bissanum R, Lirdprapamongkol K, Svasti J, et al. The role of WT1 isoforms in vasculogenic mimicry and metastatic potential of human triple negative breast cancer cells[J]. Biochem Biophys Res Commun, 2017, 494(1-2): 256-262.
[32]
Zhang Y, Yan WT, Yang ZY, et al. The role of WT1 in breast cancer: clinical implications, biological effects and molecular mechanism[J]. Int J Biol Sci, 2020, 16(8): 1474-1480.
[1]
Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215.
[2]
Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines[J]. Int Rev Immunol, 2011, 30(2-3): 150-182.
[3]
Adotévi O, Dosset M, Galaine J, et al. Targeting antitumor CD4 helper T cells with universal tumor-reactive helper peptides derived from telomerase for cancer vaccine[J]. Hum Vaccin Immunother, 2013, 9(5): 1073-1077.
[4]
Li Q, Li Z, Deng N, et al. Built-in adjuvants for use in vaccines[J]. Eur J Med Chem, 2022, 227: 113917.
[5]
Karkada M, Berinstein NL, Mansour M. Therapeutic vaccines and cancer: focus on DPX-0907[J]. Biologics, 2014, 8: 27-38.
[6]
Nezafat N, Ghasemi Y, Javadi G, et al. A novel multi-epitope peptide vaccine against cancer: an in silico approach[J]. J Theor Biol, 2014, 349: 121-134.
[7]
仲丽晴,刘芹,刘宝瑞. 肿瘤光动力免疫治疗的研究进展[J]. 中华肿瘤防治杂志2023, 30(6): 341-346.
[8]
Hutchins LF, Makhoul I, Emanuel PD, et al. Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage Ⅳ breast cancer subjects[J]. Oncotarget, 2017, 8(58): 99 161-99 178.
[9]
Chen X, Yang J, Wang L, et al. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives[J]. Theranostics, 2020, 10(13): 6011-6023.
[10]
Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360.
[11]
Marron T, Kodysh J, Rubinsteyn A, et al. 289 PGV-001: a phase 1 trial of a personalized neoantigen peptide vaccine for the treatment of malignancies in the adjuvant setting[J]. J Immunother Cancer, 2020; 8(Suppl 3): A177.
[12]
Rubinsteyn A, Kodysh J, Hodes I, et al. Computational pipeline for the PGV-001 neoantigen vaccine trial[J]. Front Immunol, 2018, 8: 1807.
[13]
Marron TU, Saxena M, Bhardwaj N, et al. An adjuvant personalized neoantigen peptide vaccine for the treatment of malignancies (PGV-001) [J]. Cancer Res., 202181(13 Suppl):LB048.
[14]
Jou J, Harrington KJ, Zocca MB, et al. The changing landscape of therapeutic cancer vaccines-novel platforms and neoantigen identification[J]. Clin Cancer Res, 2021, 27(3): 689-703.
[15]
贺庆,高华,王军志. 个体化肽治疗性肿瘤疫苗的临床药效学研究分析[J]. 中国新药杂志2021, 30(19): 1729-1737.
[16]
Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662): 222-226.
[33]
Zauderer MG, Tsao AS, Dao T, et al. A randomized phase ii trial of adjuvant galinpepimut-s, WT-1 analogue peptide vaccine, after multimodality therapy for patients with malignant pleural mesothelioma[J]. Clin Cancer Res201723(24):7483-7489.
[34]
Jain AG, Talati C, Pinilla-Ibarz J. Galinpepimut-S (GPS): an investigational agent for the treatment of acute myeloid leukemia[J]. Expert Opin Investig Drugs, 202130(6):595-601.
[35]
McCarthy PM, Clifton GT, Vreeland TJ, et al. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence[J]. Expert Opin Investig Drugs, 2021, 30(1): 5-11.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[6] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[7] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[10] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[11] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[12] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要