切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 200 -206. doi: 10.3877/cma.j.issn.1674-0807.2020.04.002

所属专题: 总编推荐 文献

论著

孕烷X受体通过微RNA21抑制乳腺癌MCF-7细胞内程序性细胞死亡因子4的表达
王少兰1,(), 李涛1, 韩曼2, 刘晓华2   
  1. 1. 712046 西安,陕西中医药大学基础医学院组织学与胚胎学教研室
    2. 712046 西安,陕西中医药大学基础医学院生理学教研室
  • 收稿日期:2018-12-08 出版日期:2020-08-01
  • 通信作者: 王少兰
  • 基金资助:
    国家自然科学基金资助项目(81904038); 陕西省教育厅科研项目(16JK1208); 陕西省自然科学基础研究计划青年项目(2017JQ8023); 陕西中医药大学创新团队项目(2019-YS06)

Pregane X receptor inhibits expression of programmed cell death 4 in MCF-7 cells via miRNA21

Shaolan Wang1,(), Tao Li1, Man Han2, Xiaohua Liu2   

  1. 1. Department of Histology and Embryology, Shaanxi University of Chinese Medicine, Xi’an 712046, China
    2. Department of Physiology, School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an 712046, China
  • Received:2018-12-08 Published:2020-08-01
  • Corresponding author: Shaolan Wang
  • About author:
    Corresponding author: Wang Shaolan, Email:
引用本文:

王少兰, 李涛, 韩曼, 刘晓华. 孕烷X受体通过微RNA21抑制乳腺癌MCF-7细胞内程序性细胞死亡因子4的表达[J/OL]. 中华乳腺病杂志(电子版), 2020, 14(04): 200-206.

Shaolan Wang, Tao Li, Man Han, Xiaohua Liu. Pregane X receptor inhibits expression of programmed cell death 4 in MCF-7 cells via miRNA21[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(04): 200-206.

目的

探讨孕烷X受体(PXR)活化对人乳腺癌细胞株MCF-7内程序性细胞死亡因子(PDCDs)的调控作用及其分子机制。

方法

用PXR激动剂利福平(10 μmol/L)处理MCF-7细胞24 h后作为利福平组,并以DMSO处理的MCF-7细胞作为其对照组(DMSO对照组),同时,为了排除PXR激动剂的非特异性,采用持续激活型PXR的腺病毒感染MCF-7细胞36 h后作为VP-PXR组,并以Mock处理的MCF-7细胞作为其对照组(Mock对照组)。对以上各组样品均采用实时荧光定量反转录PCR(qRT-PCR)检测PDCD2、PDCD4、PDCD5、PDCD6以及PXR经典靶基因CYP3A4和MDR1的mRNA表达,采用Western blot检测PDCD4的蛋白表达,并采用qRT-PCR检测PDCD4上游负调控因子微RNA(miRNA)21的表达,用Western blot检测miRNA21下游靶基因PTEN的蛋白表达。正态分布的数据用±s表示,偏态分布的数据用M(P25P75)表示。2组间各指标的比较采用两独立样本t检验或两独立样本非参数秩和检验。

结果

(1)qRT-PCR结果显示:利福平组与DMSO对照组相比,PDCD4和PDCD6的mRNA表达更低(0.896±0.069比1.262±0.103,t=-2.961,P=0.012;0.708±0.085比0.963±0.029,t=-2.829,P=0.029),而PDCD2和PDCD5的mRNA表达差异无统计学意义(0.834±0.148比1.040±0.086,t=-1.210,P=0.254;0.896±0.142比0.946±0.110,t=-0.281,P=0.786),同时,PXR经典靶基因CYP3A4和MDR1的mRNA表达均更高(2.192±0.418比1.000±0.071,t=2.809,P=0.045;2.112±0.397比1.000±0.071,t=2.758,P=0.048);VP-PXR组与Mock对照组相比,PDCD2和PDCD4的mRNA表达均更低(0.721±0.085比0.975±0.035,t=-2.767,P=0.033;0.766±0.131比1.635±0.284,t=-2.775,P=0.017),PDCD6和CYP3A4的mRNA表达差异无统计学意义[2.053(0.932~2.653)比1.000(0.796~2.091),Z=0.314,P=0.753;1.844±0.397比1.000±0.071,t=2.097,P=0.100],而MDR1的mRNA表达则更高(3.323±0.600比1.000±0.071,t=3.846,P=0.017)。(2)Western blot检测结果显示:利福平组与DMSO对照组相比,PDCD4的蛋白表达更低(0.865±0.062比1.080±0.060,t=-2.490,P=0.026);VP-PXR组与Mock对照组相比,PDCD4的蛋白表达也更低(0.901±0.065比1.130±0.045,t=-2.921,P=0.019)。(3)机制研究发现:利福平组与DMSO对照组相比,PDCD4上游负调控因子miRNA21的表达更高(1.641±0.227比1.029±0.070,t=2.576,P=0.032),VP-PXR组miRNA21的表达也显著高于Mock对照组(1.920±0.251比1.188±0.113,t=2.657,P=0.028);而且miRNA21下游靶基因PTEN的蛋白表达在利福平组和VP-PXR组均明显低于各自的对照组(0.694±0.057比0.875±0.038,t=-2.630,P=0.030;0.713±0.035比0.859±0.020,t=-3.661,P=0.006)。

结论

PXR可能通过miRNA21抑制MCF-7细胞PDCD4的表达,从而影响乳腺癌细胞的耐药性。

Objective

To investigate the potential role of activated pregane X receptor (PXR) in the regulation of programmed cell death proteins(PDCDs) in MCF-7 cells and explore the mechanism involved.

Methods

MCF-7 cells were treated with PXR agonist rifampicin (10 μmol/L) for 24 h as rifampicin group, and the cells treated with DMSO served as the control group (DMSO control group). Meanwhile, to rule out the nonspecific effect of the PXR agonist, MCF-7 cells were infected with continuously activated PXR adenovirus for 36 h (VP-PXR group), which served as VP-PXR group, and the cells infected with Mock adenovirus served as the control group (Mock control group). The mRNA expressions of PDCD2, PDCD4, PDCD5, PDCD6 and the PXR target genes (CYP3A4 and MDR1) in aforementioned groups were detected by real-time fluorescent quantitative reverse transcriptase PCR (qRT-PCR). The protein level of PDCD4 was assessed by Western blot. The expression of microRNA (miRNA) 21 (the negative regulatory factor of PDCD4) was determined by qRT-PCR, and protein level of PTEN (a target gene of miRNA21) was detected by Western blot. The data of normal distribution were expressed as ±s and the data of skewed distribution were expressed as M(P25-P75). The t test of two independent samples or nonparametric rank sum test of two independent samples were used to compare the parameters between two groups.

Results

(1)The qRT-PCR result demonstrated that mRNA expressions of PDCD4 and PDCD6 in rifampicin group were significantly lower than those in DMSO control group (0.896±0.069 vs 1.262±0.103, t=-2.961, P=0.012; 0.708±0.085 vs 0.963±0.029, t=-2.829, P=0.029); the mRNA expressions of PDCD2 and PDCD5 showed no significant difference (0.834±0.148 vs 1.040±0.086, t=-1.210, P=0.254; 0.896±0.142 vs 0.946±0.110, t=-0.281, P=0.786). Meanwhile, mRNA expressions of CYP3A4 and MDR1, the known PXR target genes, were significantly increased in rifampicin group compared with DMSO control group (2.192±0.418 vs 1.000±0.071, t=2.809, P=0.045; 2.112±0.397 vs 1.000±0.071, t=2.758, P=0.048). The mRNA expressions of PDCD2 and PDCD4 in VP-PXR group were significantly reduced compared with Mock control group (0.721±0.085 vs 0.975±0.035, t=-2.767, P=0.033; 0.766±0.131 vs 1.635±0.284, t=-2.775, P=0.017), and the mRNA expressions of PDCD6 and CYP3A4 showed no significant difference [2.053(0.932-2.653) vs 1.000(0.796-2.091), Z=0.314, P=0.753; 1.844±0.397 vs 1.000±0.071, t=2.097, P=0.100], while the MDR1 mRNA expression in rifampicin group was significantly increased (3.323±0.600 vs 1.000±0.071, t=3.846, P=0.017). (2) Western blot analysis demonstrated that the protein expression of PDCD4 in rifampicin group was significantly decreased compared with DMSO control group (0.865±0.062 vs 1.080±0.060, t=-2.490, P=0.026), and PDCD4 protein expression in VP-PXR group was significantly lower compared with Mock control group (0.901±0.065 vs 1.130±0.045, t=-2.921, P=0.019). (3) miRNA21 expression in rifampicin group was significantly higher than that in DMSO control group (1.641±0.227 vs 1.029±0.070, t=2.576, P=0.032), and miRNA21 in VP-PXR group was significantly higher than that in Mock control group (1.920±0.251 vs 1.274±0.161, t=2.657, P=0.028). In addition, the protein expression of PTEN in the rifampicin or VP-PXR group was significantly lower than that in DMSO or Mock control group (0.694±0.057 vs 0.875±0.038, t=-2.630, P=0.030; 0.713±0.0353 vs 0.859±0.020, t=-3.661, P=0.006).

Conclusion

PXR can inhibit the expression of PDCD4 via miRNA21 in MCF-7 cells, thus promoting the drug resistance of breast cancer cells.

表1 实时荧光定量反转录PCR引物序列
表2 利福平组与DMSO对照组各基因mRNA表达的差异(±s)
表3 VP-PXR组与Mock对照组各基因mRNA表达的差异
图1 采用Western blot检测乳腺癌MCF-7细胞中PDCD4和VP16的蛋白表达 a图所示利福平组与DMSO对照组PDCD4的蛋白表达;b、c图分别所示VP-PXR组与Mock对照组的PDCD4和VP16蛋白表达
表4 DMSO对照组与利福平组MCF-7细胞中miRNA21表达的差异
表5 Mock对照组与VP-PXR组MCF-7细胞中miRNA21表达的差异
图2 采用Western blot检测乳腺癌MCF-7细胞中PTEN蛋白表达 a、b图分别所示利福平组与DMSO对照组间、VP-PXR组与Mock对照组间PTEN的蛋白表达
[1]
Rathod V, Jain S, Nandekar P, et al. Human pregnane X receptor: a novel target for anticancer drug development[J]. Drug Discov Today, 2014, 19(1): 63-70.
[2]
Vadlapatla RK, Vadlapudi AD, Pal D, et al. Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes [J]. Curr Pharm Des, 2013, 19(40): 7126-7140.
[3]
Zhuo W, Hu L, Lv J, et al. Role of pregnane X receptor in chemotherapeutic treatment[J]. Cancer Chemother Pharmacol, 2014, 74(2): 217-227.
[4]
Zucchini N, de Sousa G, Bailly-Maitre B, et al. Regulation of Bcl-2 and Bcl-xL anti-apoptotic protein expression by nuclear receptor PXR in primary cultures of human and rat hepatocytes [J]. Biochim Biophys Acta, 2005, 1745(1): 48-58.
[5]
Zhou J, Liu M, Zhai Y, et al. The antiapoptotic role of pregnane X receptor in human colon cancer cells[J]. Mol Endocrinol, 2008, 22(4): 868-880.
[6]
胡鑫,韦薇. PDCD4与乳腺癌关系的研究进展[J]. 中国癌症防治杂志,2016, 8(5): 325-328.
[7]
Wang S, Lei T, Zhang K, et al. Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells[J]. J Biol Chem, 2014, 289(43): 30 075-30 081.
[8]
Albeck J, Brugge J. Uncovering a tumor suppressor for triple-negative breast cancers[J]. Cell, 2011, 144(5): 638-640.
[9]
Chen Y, Tang Y, Chen S, et al. Regulation of drug resistance by human pregnane X receptor in breast cancer[J]. Cancer Biol Ther, 2009, 8(13): 1265-1272.
[10]
He L, Zhou X, Huang N, et al. Functions of pregnane X receptor in self-detoxification[J]. Amino Acids, 2017, 49(12): 1999-2007.
[11]
Pondugula SR, Mani S. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response[J]. Cancer Lett, 2013, 328(1): 1-9.
[12]
乔恩奇,季明华,吴建中,等. 核受体PXR对乳腺癌耐药性影响的研究[J]. 中华肿瘤防治杂志,2013, 20(12): 881-885.
[13]
Verma S, Tabb MM, Blumberg B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells[J]. BMC Cancer, 2009, 9(1): 3.
[14]
Baron BW, Zeleznik-Le N, Baron MJ, et al. Repression of the PDCD2 gene by BCL6 and the implications for the pathogenesis of human B and T cell lymphomas[J]. Proc Natl Acad Sci U S A, 2007, 104(18): 7449-7454.
[15]
Zhang J, Wei W, Jin HC, et al. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner[J]. Oncol Rep, 2015, 33(1): 103-110.
[16]
Wang Q, Yang HS. The role of Pdcd4 in tumor suppression and protein translation [EB/OL]. [2018-12-01].

URL    
[17]
Afonja O, Juste D, Das S, et al. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis[J]. Oncogene, 2004, 23(49): 8135-8145.
[18]
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review)[J]. Int J Oncol, 2016, 49(5): 1801-1806.
[19]
Hashemi M, Bahari G, Markowski J, et al. Association of PDCD6 polymorphisms with the risk of cancer: Evidence from a meta-analysis[J]. Oncotarget, 2018, 9(37): 24 857-24 868.
[20]
Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the miR-21 in breast cancer cells[J]. J Biol Chem, 2008, 283(2): 1026-1033.
[21]
Tong AW, Nemunaitis J. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy?[J]. Cancer Gene Ther, 2008, 15(6): 341-355.
[22]
张雁磊,张吉强. 微RNA在乳腺癌发生发展中的作用[J/CD]. 中华乳腺病杂志(电子版), 2012, 6(6): 668-674.
[23]
Petrović N. miR-21 might be involved in breast cancer promotion and invasion rather than in initial events of breast cancer development[J]. Mol Diagn Ther, 2016, 20(2): 97-110.
[24]
杨旸. miRNA-21与肿瘤相关研究新进展[J]. 中国肿瘤临床,2011, 38(6): 357-360.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要