切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2009, Vol. 03 ›› Issue (05) : 535 -541. doi: 10.3877/cma.j.issn.1674-0807.2009.05.011

实验研究

乳腺癌患者与健康人血清蛋白质谱的差异分析
梁燕1, 姜军1, 柴凡1, 王秀丽1, 高春芳1, 钟玲1   
  1. 1.400038 重庆,第三军医大学西南医院乳腺疾病中心
  • 收稿日期:2009-09-29 出版日期:2009-10-01

Analysis of the difference of serum proteome profiles between breast cancer patients and heathy women

Yan Liang1, Jun Jiang1, Fan CHAI1, Xiu-li WANG1, Chunfang GAO1, Ling ZHONG1   

  1. 1.Breast Disease Center,Southwest Hospital,Third Military Medical University,Chongqing 400038,China
  • Received:2009-09-29 Published:2009-10-01
引用本文:

梁燕, 姜军, 柴凡, 王秀丽, 高春芳, 钟玲. 乳腺癌患者与健康人血清蛋白质谱的差异分析[J/OL]. 中华乳腺病杂志(电子版), 2009, 03(05): 535-541.

Yan Liang, Jun Jiang, Fan CHAI, Xiu-li WANG, Chunfang GAO, Ling ZHONG. Analysis of the difference of serum proteome profiles between breast cancer patients and heathy women[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2009, 03(05): 535-541.

目的

探索乳腺癌患者与健康人群的血清蛋白质谱差异,寻找能够帮助鉴别诊断乳腺癌的候选血清蛋白标志物。

方法

收集117例乳腺癌患者和56例健康人的血清标本,随机分为训练组(74例乳腺癌和36例健康人)与测试组(43例乳腺癌和20例健康对照)。采用表面增强激光解析离子化飞行时间质谱(SELDI-TOF MS)技术检测所有血清标本的蛋白质谱。用Bio mar ker Wizar d统计软件比较训练组乳腺癌与健康对照间的蛋白质谱差异,再用Bio mar ker Patter n软件筛选出一组差异蛋白构建决策分类树模型以鉴别乳腺癌病例和健康人群,最后用测试组对分类模型进行验证。

结果

乳腺癌组和健康对照组的血清蛋白质谱存在14个差异显著的蛋白峰,以质荷比分别为3958、4288、4974、5902、8518、8930、9282和11 360的8个差异蛋白构建决策树分类模型,鉴别乳腺癌与健康对照组的敏感性为82.43% (61/74),特异性为83.33%(30/36),准确性为82.73%(91/110),用测试组进行验证的敏感性为86.05% (37/43),特异性为65.00% (13/20),准确性为79.37%(50/63)。

结论

乳腺癌与健康人群的血清蛋白质谱存在差异,SELDI-TOF MS技术筛选出的血清差异蛋白有助于乳腺癌的鉴别诊断。

Objective

To investigate the difference of serum proteome between breast cancer patients and healthy women,and seek for some potential biomarkers to distinguish breast caner patients from healthy wo men using aserum protein finger printing technique.

Methods

Total serumsamples collected from 117 breast cancer patients and 56 healthy wo men were divided into alearn-group (74 breast cancer patients and 36 healthy)women and a test-group(43 breast cancer patients and 30 healthy women).The samples were detected by surface enhanced laser desorption/ionization time-of-flight mass spectro metry(SELDI-TOF-MS).Differences of mass spectrums bet ween breast cancer patients and healthy women from the learn-group were analyzed by Bio marker Wizard soft ware.So me different pr otein peaks were picked out and a classification tree was developed for identification of breast cancer patients using Bio marker Pattern soft ware.The classification model was validated by an independent sample from the test-group.

Results

Fourteen protein peaks were significantly different between breast cancer and healthy wo men gr oups.Eight proteins mass/charge of 3958,4288,4974,5902,8518,8930,9282 and 11 360 could identify breast cancer patients fro m healthy wo men with decision tree classification method.Sensitivity,specificity and correct ratio of the method were 82.43% (61/74),83.33% (30/36)and 82.73%(91/110),respectively.Invalidation test,the sensitivity,specificity and correct ratio of the method were 86.05% (37/43),65.00%(13/20)and 79.37%(50/63),respectively.

Conclusions

There are some different pr oteins in serum between breast cancer patients and healthy women.Candidate pr otein biomarkers in serum screened by SELDI-TOF MS could facilitate the diagnosis of breast cancer.

表1 乳腺癌与健康对照的血清差异蛋白的相对含量
图1 乳腺癌和健康对照组的血清蛋白质谱图 a:乳腺癌;b:健康对照
图2 差异蛋白构建决策树分类模型 以质荷比分别为3958、4288、4974、5902、8518、8930、9282和11 360的8个差异蛋白构建决策树分类模型,用于鉴别乳腺癌病例与健康人群。
[1]
Li J,Zhang Z,Rosenzweig J,et al.Pr oteo mics and bioinf or matics appr oaches f or identification of ser u m bio mar kers to detect breast cancer.Clin Che m ,2002,48:1296-1304.
[2]
Li J,Orlandi R,White C N,et al.Independent validation of candidate breast cancer ser u m bio mar kers identified by mass spectr o metr y.Clin Che m,2005,51:2229-2235.
[3]
Mathelin C,Cro mer A,Wendling C,et al.Seru m bio markers for detection of breast cancers:a prospective study.Breast Cancer Res Treat,2006,96:83-90.
[4]
Van Winden A W J,Gast M C W,Beijnen J H,et al.Validation of previously identified seru m biomarkers for breast cancer with SELDI-TOF MS:a case control study.BMC Med Genomics,2009,2:4.
[5]
Goncalves A,Esterni B,Bertucci F,et al.Postoperative seru m proteo mic profiles may predict metastatic relapse in highrisk pri mary breast cancer patients receiving adjuvant chemotherapy.Oncogene,2006,25:981-989.
[6]
Song J,Patel M,Rosenzweig C N,et al.Quantification of fragments of hu man seru m inter-alphatrypsin inhibitor heavy chain 4 by a surface-enhanced laser desorption/ionization-based i mmunoassay.Clin Chem,2006,52:1045-1053.
[7]
Villanueva J,Shaffer DR,Philip J,et al.Diff erential exopr otease activities conf er t u mor-specific ser u m peptido me patter ns.J Clin Invest,2006,116:271-284.
[8]
Fung E T,Yip T T,Lomas L,et al.Classification of cancer types by measuring variants of host response proteins using SELDI serum assays.Int J Cancer,2005,115:783-789.
[9]
Heike Y,Hosokawa M,Osumi S,et al.Identification of serumproteins related to adverse effectsinduced by docetaxel infusionfromprotein expression profiles of serumusing SELDI ProteinChip system.Anticancer Res,2005,25:1197-1203.
[10]
eong S,Christopherson R I,Baxter R C .Pr ofiling of apoptotic changes in hu man breast cancer cells using SELDI-TOF mass spectr o metr y.Cell Physiol Biochem,2007,20:579-590.
[11]
anders M E,Dias E C,Xu BJ,et al.Differentiating proteo mic bio mar kers in breast cancer by laser capture microdissection and MALDI MS.J Pr oteo me Res,2008,7:1500-1507.
[12]
icolleau G,Charbonnel C,Lode L,et al.Surface enhanced laser desorption/ionization ti me of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tu mors.Proteomics,2006,6:1963-1975.
[13]
oncalves A,CharafeJauffret E,Bertucci F,et al.Protein profiling of hu man breast tu mor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics,2008,7:1420-1433.
[14]
u Y,Zhang S,Yu J,et al.SELDI-TOF-MS:the proteomics and bioinfor matics approaches in the diagnosis of breast cancer.Breast,2005,14:250-255.
[15]
aronga C,Becker S,Watson P,et al .SELDI-TOF seru m profiling for prognostic and diagnostic classification of breast cancers.Dis Markers,2003,19:229-238.
[16]
hin S,Cazares L,Schneider H,et al.Seru m bio markers to differentiate benign and malignant mammographic lesions.J Am Coll Surg,2007,204:1065-1071.
[17]
ecker S,Cazares L H,Watson P,et al.Surfaced-enhanced laser desorption/ionization ti me-of-flight(SELDI-TOF)differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer.Ann Surg Oncol,2004,11:907-914.
[18]
elluco C,Petricoin EF,Mammano E,et al.Serumproteomic analysisidentifices a highly sensitive and specific discri minatory pattern in stage 1 breast cancer.Ann Surg Oncol,2007,14:2470-2476.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[5] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[8] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[9] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要