切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 229 -237. doi: 10.3877/cma.j.issn.1674-0807.2023.04.005

论著

基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型
叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪(), 叶娴   
  1. 523000 东莞职业技术学院卫生健康学院
    523059 东莞市人民医院/南方医科大学第十附属医院乳腺外科
  • 收稿日期:2023-01-09 出版日期:2023-08-01
  • 通信作者: 钟慕仪

Nomogram based on clinicopathological and imaging features to predict recurrence of benign and borderline breast phyllodes tumor

Yanna Ye, Ruiting Ye, Yanling Chen, Wen Peng, Le Liu, Wenqiu Xiao, Hui Huang, Mingshen Li, Muyi Zhong(), Xian Ye   

  1. School of Health, Dongguan Vocational and Technical College, Dongguan 523000, China
    Department of Breast Surgery, Dongguan People’s Hospital/Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, China
  • Received:2023-01-09 Published:2023-08-01
  • Corresponding author: Muyi Zhong
引用本文:

叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.

Yanna Ye, Ruiting Ye, Yanling Chen, Wen Peng, Le Liu, Wenqiu Xiao, Hui Huang, Mingshen Li, Muyi Zhong, Xian Ye. Nomogram based on clinicopathological and imaging features to predict recurrence of benign and borderline breast phyllodes tumor[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(04): 229-237.

目的

本研究探讨良性与交界性乳腺叶状肿瘤(PT)复发的潜在因素,构建列线图以预测PT复发率。

方法

回顾性分析2016年6月至2019年12月在东莞市人民医院就诊的65例良性与交界性PT患者的临床病理及影像学资料,采取单因素及多因素Logistic回归分析其复发的独立危险因素,构建列线图。绘制受试者操作特征(ROC)曲线,计算曲线下面积(AUC);通过bootstrap建立校准曲线评估校准性能;通过决策曲线分析(DCA)证明该预测模型的临床实用性。

结果

单因素Logistic回归分析显示发现与治疗间隔时间(TIMDT)>6个月、MRI强化方式不均匀、超声表现(肿瘤形态不规则、边缘不光整、分叶征、内回声不均匀、点状强回声、血流信号中等/丰富和囊性结构)与PT复发有关(P均<0.050)。多因素Logistic回归分析显示TIMDT>6个月(OR=32.230,95%CI:2.343~443.367,P=0.009)、MRI强化方式不均匀(OR=16.786,95%CI:1.030~273.431,P=0.048)及超声肿瘤分叶征(OR=14.861,95%CI:1.155~191.205,P=0.038)是PT复发的独立危险因素。根据这3个危险因素构建列线图,ROC曲线的AUC为0.906(95%CI:0.811~1.000),敏感度为83.3%,特异度为88.7%。校准曲线接近于理想曲线,拟合度较高。DCA曲线表明高风险阈值处于0.04~0.96时,使用该列线图预测PT复发的净获益率高。

结论

TIMDT>6个月、MRI强化方式不均匀、具有超声肿瘤分叶征的良性与交界性乳腺PT患者复发风险较高。基于这3个因素开发的列线图预测PT复发能力较强,临床应用价值高。

Objective

To explore the potential factors related to the recurrence of benign and borderline breast phyllodes tumor (PT) and establish a nomogram to predict the recurrence rate of PT.

Methods

The clinicopathological and imaging data of 65 patients with benign and borderline PT who were treated in Dongguan People’s Hospital from June 2016 to December 2019 were retrospectively analyzed. The univariate and multivariate logistic regression were used to analyze the independent risk factors for recurrence, and a nomogram was constructed accordingly. The receiver operating characteristics (ROC) curve was drawn and the area under the curve (AUC) was calculated. A calibration curve was established by bootstrap method to evaluate calibration performance. The clinical utility of this predictive model was demonstrated by decision curve analysis (DCA).

Results

Univariate logistic regression analysis showed that the time interval between mass discovery and treatment (TIMDT)>6 months, uneven MRI enhancement pattern, ultrasonic findings(irregular shape, uneven edge, tumor lobulation, uneven internal echo, punctate strong echo, moderate/abundant blood flow signal and cystic structure) were related to PT recurrence (all P<0.050). Multivariate logistic regression analysis showed that TIMDT>6 months (OR=32.230, 95%CI: 2.343-443.367, P=0.009), uneven MRI enhancement pattern (OR=16.786, 95%CI: 1.030-273.431, P=0.048) and ultrasonic tumor lobulation (OR=14.861, 95%CI: 1.155-191.205, P=0.038) were independent risk factors for PT recurrence. A nomogram was constructed based on these three independent risk factors. The AUC of ROC was 0.906 (95%CI: 0.811-1.000), the sensitivity was 83.3% and the specificity was 88.7%. The calibration curve of the model showed a good calibration efficiency. The DCA curve displayed high clinical net benefit from predicting PT recurrence at a threshold of 0.04-0.96.

Conclusion

The benign and borderline breast PT patients with the following features (TIMDT>6 months, uneven MRI enhancement pattern, and ultrasonic tumor lobulation) are in high risk of recurrence. The nomogram based on these three factors shows a strong ability to predict the recurrence of PT, indicating high potential in clinical application.

表1 65例乳腺叶状肿瘤患者临床病理特征与肿瘤复发单因素Logistic回归分析结果(例)
表2 65例乳腺叶状肿瘤患者MRI特征与肿瘤复发单因素Logistic回归分析结果(例)
表3 65例乳腺叶状肿瘤患者超声成像特征与肿瘤复发单因素Logistic回归分析结果(例)
表4 65例乳腺叶状肿瘤患者复发多因素Logistic回归分析结果
图1 65例乳腺叶状肿瘤患者的复发预测模型列线图
图2 65例乳腺叶状肿瘤患者复发预测模型的受试者操作特征曲线注:曲线下面积为0.906
图3 65例乳腺叶状肿瘤患者复发预测模型的校准曲线
图4 65例乳腺叶状肿瘤患者复发预测模型的决策曲线分析
[1]
Liberman L, Bonaccio E, Hamele-Bena D, et al. Benign and malignant phyllodes tumors: mammographic and sonographic findings[J]. Radiology, 1996198(1):121-124.
[2]
Tse GM, Niu Y, Shi HJ. Phyllodes tumor of the breast: an update[J]. Breast Cancer, 201017(1):29-34.
[3]
Yang WT, Bu H. Updates in the 5(th) edition of WHO classification of tumours of the breast[J]. Zhonghua Bing Li Xue Za Zhi, 202049(5):400-405.
[4]
Fischer KM, S J Brooks J, Ugras SK. Invasive lobular carcinoma involving a borderline phyllodes tumor[J], Breast J, 201824(6):1076-1077.
[5]
王明君,杨芳,赵红梅. 乳腺叶状肿瘤临床分析[J]. 河北医药201537(6):865-867.
[6]
贾翠,梅放,柳剑英,等. 乳腺叶状肿瘤的分级指标及预后相关因素探讨[J]. 中华病理学杂志201746(01):14-19.
[7]
Iasonos A, Schrag D, Raj GV, et al. How to build and interpret a nomogram for cancer prognosis[J]. J Clin Oncol, 200826(8):1364-1370.
[8]
张晶,夏艳,王兆锦,等. 乳腺癌术后化疗患者营养不良风险的列线图模型构建[J]. 肿瘤代谢与营养电子杂志20229(2):224-228.
[9]
Chai X, Sun MY, Jia HY, et al. A prognostic nomogram for overall survival in male breast cancer with histology of infiltrating duct carcinoma after surgery [J]. Peer J, 20197:e7837.
[10]
Sadeghi M, Alamdaran SA, Daneshpajouhnejad P, et al. A Logistic regression nomogram to predict axillary lymph node metastasis in early invasive breast cancer patients[J]. Breast J, 201925(4):769-771.
[11]
Pan X, Yang W, Chen Y, et al. Nomogram for predicting the overall survival of patients with inflammatory breast cancer: a SEER-based study[J]. Breast, 2019, 47: 56-61.
[12]
Kim JH, Ko ES, Lim Y,et al. Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes[J]. Radiology, 2017, 282(3):665-675.
[13]
Lu Y, Chen Y, Zhu L. Local recurrence of benign, borderline, and malignant phyllodes tumors of the breast: a systematic review and meta-analysis[J]. Ann Surg Oncol, 201926(5):1263-1275.
[14]
Tan PH, Ellis I, Allison K, et al. The 2019 World Health Organization classification of tumours of the breast[J]. Histopathology, 202077(2):181-185.
[15]
Reinfuss M, Mitus′ J, Duda K, et al. The treatment and prognosis of patients with phyllodes tumor of the breast: an analysis of 170 cases[J]. Cancer, 1996, 77(5):910-916.
[16]
Cheng SP, Chang YC, Liu TP, et al. Phyllodes tumor of the breast: the challenge persists[J]. World J Surg, 200630(8):1414-1421.
[17]
Choi N, Kim K, Shin KH, et al. The characteristics of local recurrence after breast-conserving surgery alone for malignant and borderline phyllodes tumors of the breast(KROG 16-08)[J]. Clin Breast Cancer, 201919(5):345-353.
[18]
Lawrence AE, Saito J, Onwuka A, et al. Management of pediatric breast masses: a multi-institutional retrospective cohort study[J]. J Surg Res, 2021, 264:309-315.
[19]
张忠玲,熊辉. 乳腺良性叶状肿瘤真空辅助旋切与开放手术对术后局部复发的影响[J]. 医学信息202336(12):133-135+139.
[20]
Zhou ZR, Wang CC, Sun XJ, et al. Prognostic factors in breast phyllodes tumors: a nomogram based on a retrospective cohort study of 404 patients[J]. Cancer Med, 20187(4):1030-1042.
[21]
钟镇铧,范凤凤,李占文. 乳腺良性叶状肿瘤不同手术治疗效果及复发危险因素分析[J].浙江医学2022, 44(19):2081-2084+2088.
[22]
Madhu Krishna B, Chaudhary S, Mishra DR, et al. Estrogen receptor α dependent regulation of estrogen related receptor β and its role in cell cycle in breast cancer[J]. BMC Cancer, 201818(1): 607.
[23]
Haagensen DE Jr, Kister SJ, Vandevoorde JP, et al. Evaluation of carcinoembryonic antigen as a plasma monitor for human breast carcinoma[J]. Cancer, 197842(3 Suppl):1512-1519.
[24]
Zhang Y, Kleer CG. Phyllodes tumor of the breast: histopathologic features, differential diagnosis, and molecular/genetic updates[J]. Arch Pathol Lab Med, 2016140(7):665-671.
[25]
Abe M, Miyata S, Nishimura S. Malignant transformation of breast fibroadenoma to malignant phyllodes tumor: long-term outcome of 36 malignant phyllodes tumors[J]. Breast Cancer, 201118(4):268-272.
[26]
王晓洁. 乳腺增生症发病的相关因素分析[J]. 实用医技杂志2017, 24(3):308-310.
[27]
刘艺萌. 乳腺导管内乳头状瘤及其共存病变的临床病理特征及预后分析[D]. 郑州大学,2021.
[28]
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Breast cancer. Version 4.2023[EB/OL]. [2023-01-08].

URL    
[29]
Adesoye T, Neuman HB, Wilke LG, et al. Current trends in the management of phyllodes tumors of the breast[J]. Ann Surg Oncol, 2016, 23(10): 3199-3205.
[30]
Velazquez-Dohorn M, Gamboa-Dominguez A, Medina-Franco H, et al. Phyllodes tumor of the breast: clinicopathologic analysis of 22 cases[J]. Rev Invest Clin, 2013, 65: 214-220.
[31]
Anani T, Rahmati S, Sultana N, et al. MRI-traceable theranostic nanoparticles for targeted cancer treatment[J]. Theranostics, 202111(2):579-601.
[32]
Yabuuchi H, Soeda H, Matsuo Y, et al. Phyllodes tumor of the breast: correlation between MR findings and histologic grade [J]. Randiology, 2006241(3):702-709.
[33]
Lee JY. Giantv phyllodes tumor of the breast with diffuse myxoid changes in an adolescent girl: a case report[J]. J Surg Case Rep, 20172017(2):rjx019.
[34]
谷红玉,罗松,邓小毅,等. 不同病理级别的乳腺叶状肿瘤MRI成像分析[J]. 临床放射学杂志201938(7):1194-1197.
[35]
Kitajima K, Yamano T, Miyoshi Y, et al. Prognostic value of 18F-FDG PET/CT prior to breast cancer treatment. Comparison with magnetic resonance spectroscopy and diffusion weighted imaging[J]. Hell J Nucl Med, 201922(1):25-35.
[36]
Cheng TW, Lee JY, Lee CS, et al. Validation of the Singapore nomogram for outcome prediction in breast phyllodes tumours: an Australian cohort [J]. J Clin Pathol, 2016, 69(12):1124-1126.
[37]
Van Rijssel MJ, Pluim JPW, Chan HM, et al. Correcting time-intensity curves in dynamic contrast-enhanced breast MRI for inhomogeneous excitation fields at 7T [J]. Magn Reson Med, 2020, 84(2):1000-1010.
[38]
林娇卡,姚海东,汪泽燕,等. 乳腺叶状肿瘤的影像学表现与病理相关性研究[J]. 现代医用影像学201827(2):430 -431.
[39]
Mai H, Mao Y, Dong T, et al. The utility of texture analysis based on breast magnetic resonance imaging in differentiating phyllodes tumors from fibroadenomas [J]. Front Oncol, 20199: 1021.
[40]
陈对梅,汪青山,王峻,等. 乳腺叶状肿瘤的MRI表现分析[J]. 磁共振成像20134(1):24-28.
[41]
双萍,乔鹏岗,秦永超,等. 乳腺叶状肿瘤MRI诊断价值[J]. 中国临床医学影像杂志201425(12):852-855.
[42]
Hahn M, Fugunt R, Schoenfisch B, et al. High intensity focused ultrasound (HIFU) for the treatment of symptomatic breast fibroadenoma[J]. Int J Hyperthermia, 201835(1):463-470.
[43]
丁华杰,刘会玲,那磊,等. 超声弹性成像对乳腺增生症伴纤维腺瘤与乳腺癌BI-RADS校正价值[J]. 重庆医学201746(35):4930- 4931.
[44]
Basara Akin I, Ozgul H, Simsek K, et al. Texture analysis of ultrasound images to differentiate simple fibroadenomas from complex fibroadenomas and benign phyllodes tumors[J]. J Ultrasound Med, 2020, 39(10):1993-2003.
[45]
张韵华,刘利民,夏罕生,等. 乳腺叶状肿瘤的二维、彩色及弹性超声表现[J]. 中国临床医学201421(3):307-310.
[46]
Papas Y, Asmar AE, Ghandour F, et al. Malignant phyllodes tumors of the breast: A comprehensive literature review[J]. Breast J, 202026(2):240-244.
[47]
李成程. 基于X线及MRI影像特征与X线影像组学特征鉴别乳腺叶状肿瘤良恶性的价值[D]. 东南大学,2022.
[48]
Park SY. Nomogram: An analogue tool to deliver digital knowledge[J]. J Thorac Cardiovasc Surg, 2018155(4):1793.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[6] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[7] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[8] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 谢田伟, 庞于樊, 吴丽. 超声引导下不同消融术对甲状腺良性结节体积缩减率、复发率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 80-83.
[11] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[12] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[13] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?