[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
|
[2] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7):783-791.
|
[3] |
庄琰,张进,杜森,等.MR间质淋巴造影在诊断乳腺癌腋窝淋巴结转移中的临床意义表达[J].医药论坛杂志,2019,40(2):78-79.
|
[4] |
Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer[J]. Ann Surg Oncol, 2018, 25(7):1783-1785.
|
[5] |
吴佩琪.影像组学在乳腺癌淋巴结转移中的研究进展[J].分子影像学杂志,2020,43(1):31-35.
|
[6] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
|
[7] |
Gherghe M, Bordea C, Blidaru A. Sentinel lymph node biopsy (SLNB) vs. axillary lymph node dissection (ALND) in the current surgical treatment of early stage breast cancer[J]. J Med Life, 2015, 8(2):176-180.
|
[8] |
Liu J, Sun D, Chen L, et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J]. Front Oncol, 2019, 9:980.
|
[9] |
张强,牛连杰,黄涛,等.早期乳腺癌520例前哨淋巴结转移关联性分析及预测研究[J].中华肿瘤防治杂志,2020,27(22):1850-1854.
|
[10] |
Zhu Y, Zhou W, Jia XH, et al. Preoperative axillary ultrasound in the selection of patients with a heavy axillary tumor burden in early-stage breast cancer: what leads to false-positive results[J]. J Ultrasound Med, 2018, 37(6):1357-1365.
|
[11] |
李玉欣,王嬴煊,程流泉,等.MRI、乳腺X线摄影和超声对乳腺导管原位癌检出的效能[J].中华放射学杂志,2020,54(6):557-562.
|
[12] |
Harnan SE, Cooper KL, Meng Y, et al. Magnetic resonance for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis[J]. Eur J Surg Oncol, 2011, 37(11):928-936.
|
[13] |
Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4):488-495.
|
[14] |
周嘉音,尤超,顾雅佳.影像组学在乳腺癌的应用研究进展[J].国际医学放射学杂志,2022,45(2):174-179.
|
[15] |
陈基明,朱浩雨,高静,等.基于临床病理及常规和功能MRI影像组学模型预测乳腺癌腋窝淋巴结转移[J].中国医学影像技术,2021,37(6):885-890.
|
[16] |
刘梅婕,毛宁,马恒,等.基于影像组学构建乳腺癌前哨淋巴结转移预测模型的研究[J].中国中西医结合影像学杂志,2020,18(3):227-231.
|
[17] |
罗红兵,刘圆圆,青浩渺,等.乳腺癌腋窝淋巴结的DCE-MRI影像组学特征对诊断其转移状态价值的初步研究[J].临床放射学杂志,2021,40(3):442-447.
|
[18] |
Kang SR, Kim HW, Kim HS. Evaluating the relationship between dynamic contrast-enhanced MRI (DCE-MRI) parameters and pathological characteristics in breast cancer[J]. J Magn Reson Imaging, 2020, 52(5):1360-1373.
|
[19] |
Wang QQ, Yu SC, Qi X, et al. Overview of logistic regression model analysis and application[J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2019, 53(9):955-960.
|
[20] |
Ishwaran H, Lu M. Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival[J]. Stat Med, 2019, 38(4):558-582.
|
[21] |
Sugahara S, Ueno M. Exact learning augmented Naive Bayes Classifier[J]. Entropy (Basel), 2021, 23(12):1703.
|
[22] |
Che D, Liu Q, Rasheed K, et al. Decision tree and ensemble learning algorithms with their applications in bioinformatics[J]. Adv Exp Med Biol, 2011, 696:191-199.
|
[23] |
Zhang Z. Introduction to machine learning: k-nearest neighbors[J]. Ann Transl Med, 2016, 4(11):218-224.
|
[24] |
Huang S, Cai N, Pacheco PP, et al. Applications of support vector machine (SVM) learning in cancer genomics[J]. Cancer Genomics Proteomics, 2018, 15(1):41-51.
|
[25] |
Downs-Canner SM, Gaber CE, Louie RJ, et al. Nodal positivity decreases with age in women with early-stage, hormone receptor-positive breast cancer[J]. Cancer, 2020, 126(6):1193-1201.
|