切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2016, Vol. 10 ›› Issue (05) : 310 -315. doi: 10.3877/cma.j.issn.1674-0807.2016.05.012

综述

长链非编码RNA 调控乳腺癌增殖、转移、耐药性及乳腺癌干细胞
刘翠翠1,2, 王光学1, 赵倩1, 邓生琼1, 孟令彧1,2, 吕金辉1,3, 向振东1, 张楚怡1, 甄丽晓1, 俞作仁1,2,()   
  1. 1.200120 上海,同济大学附属东方医院转化医学研究中心
    2.116044 大连医科大学基础医学院
    3.325000,温州医科大学基础医学院微生物学与免疫学教研室
  • 收稿日期:2015-10-15 出版日期:2016-10-01
  • 通信作者: 俞作仁
  • 基金资助:
    国家自然科学基金资助项目(81172515,81572593)

Long non-coding RNA regulates proliferation, metastasis, and drug resistance of breast cancer and breast cancer stem cells

Cuicui Liu, Guangxue Wang, Qian Zhao, Shengqiong Deng, Lingyu Meng, Jinhui Lv, Zhendong Xiang, Chuyi Zhang, Lixiao Zhen, Zuoren Yu()   

  • Received:2015-10-15 Published:2016-10-01
  • Corresponding author: Zuoren Yu
引用本文:

刘翠翠, 王光学, 赵倩, 邓生琼, 孟令彧, 吕金辉, 向振东, 张楚怡, 甄丽晓, 俞作仁. 长链非编码RNA 调控乳腺癌增殖、转移、耐药性及乳腺癌干细胞[J/OL]. 中华乳腺病杂志(电子版), 2016, 10(05): 310-315.

Cuicui Liu, Guangxue Wang, Qian Zhao, Shengqiong Deng, Lingyu Meng, Jinhui Lv, Zhendong Xiang, Chuyi Zhang, Lixiao Zhen, Zuoren Yu. Long non-coding RNA regulates proliferation, metastasis, and drug resistance of breast cancer and breast cancer stem cells[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2016, 10(05): 310-315.

长链非编码RNA(lncRNA)是不编码蛋白质的新型RNA 分子,在表观遗传学、基因转录及转录后水平调控基因表达,并能够与蛋白质、核酸互相作用,参与多种生理和病理过程的调控。 研究表明,lncRNA 在多种癌细胞异常表达,并在癌症的起始、发展、侵袭及转移等过程中发挥重要功能。 乳腺癌发生、发展和转移等过程受到多基因、多因素的调控,不同lncRNA 分子对乳腺癌的调控功能和作用机制各异。 笔者回顾了lncRNA 在乳腺癌中的最新研究进展,对lncRNA 参与调控乳腺癌增殖、转移、耐药以及乳腺癌干细胞等多个环节分别讨论,并对lncRNA 在乳腺癌早期诊断和靶向治疗等方面的应用前景和面临的挑战进行了展望和分析。

图1 长链非编码RNA(lncRNA)分类
图2 长链非编码RNA 的功能和作用机制
表1 乳腺癌相关的lncRNA
图3 HOTAIR 促进乳腺癌转移的机制 注:HOTAIR 为长链非编码RNA;PRC2 为转录因子;EZH2 为zeste 同源蛋白2 的增强子;SUZ12 和EED 为多梳蛋白;Tri-m-H3K27 为K27 三甲基化组蛋白
图4 NKILA 抑制乳腺癌转移的分子机制 注:NF-κB 为核因子NF-κB,IκB 为κB 抑制剂,NKILA 为NF-κB 交互作用性长链非编码RNA
[1]
Ponting CP, Belgard TG. Transcribed dark matter: meaning or myth?[J]. Hum Mol Genet,2010,19(R2): R162-168.
[2]
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells [J]. Nature,2012,489(7414):101-108.
[3]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs [J]. Cell,2009,136(4):642-655.
[4]
Wu Q, Kim YC, Lu J, et al. Poly A- transcripts expressed in HeLa cells [J]. PLoS One,2008,3(7): e2803.
[5]
Du Toit A. Non-coding RNA: RNA stability control by Pol Ⅱ[J].Nat Rev Mol Cell Biol,2013,14(3):128.
[6]
Necsulea A, Soumillon M, Warnefors M, et al. The evolution of lncRNA repertoires and expression patterns in tetrapods [J]. Nature,2014,505(7485):635-640.
[7]
Odom DT, Dowell RD, Jacobsen ES, et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse [J]. Nat Genet,2007,39(6):730-732.
[8]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs [J]. Cell,2009,136(4):629-641.
[9]
Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer [J]. Genome Res, 2013, 23(9):1446-1461.
[10]
Lee JT. Epigenetic regulation by long noncoding RNAs [J]. Science,2012,338(6113):1435-1439.
[11]
Vennin C, Spruyt N, Dahmani F, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b [J]. Oncotarget, 2015, 6(30):29 209-29 223.
[12]
Yu F, Zheng J, Mao Y, et al. Long non-coding RNA growth arrestspecific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA [J]. J Biol Chem, 2015,290(47):28 286-28 298.
[13]
Su X, Malouf GG,Chen Y,et al. Comprehensive analysis of long noncoding RNAs in human breast cancer clinical subtypes [ J].Oncotarget,2014,5(20):9864-9876.
[14]
Yu Z, Baserga R, Chen L, et al. microRNA, cell cycle, and human breast cancer [J].Am J Pathol,2010,176(3):1058-1064.
[15]
Lottin S, Adriaenssens E, Dupressoir T, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells [J]. Carcinogenesis,2002,23(11):1885-1895.
[16]
Barsyte-Lovejoy D, Lau SK, Boutros PC, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis [J]. Cancer Res,2006,66(10):5330-5337.
[17]
Ratajczak MZ. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey' to cancerogenesis [J]. Folia Histochem Cytobiol,2012,50(2):171-179.
[18]
Yang C, Li X, Wang Y, et al. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells [J]. Gene,2012,496(1):8-16.
[19]
Huang J, Zhou N, Watabe K, et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1) [J]. Cell Death Dis,2014,5: e1008.
[20]
Pickard MR, Williams GT. Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA [J]. Genes (Basel),2015,6(3):484-499.
[21]
Pickard MR, Williams GT. Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy [J].Breast Cancer Res Treat,2014,145(2):359-370.
[22]
Silva JM, Boczek NJ, Berres MW, et al. LSINCT5 is overexpressed in breast and ovarian cancer and affects cellular proliferation [J]. RNA Biol,2011,8(3):496-505.
[23]
Mondal T, Subhash S, Vaid R, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures [J]. Nat Commun,2015,6:7743.
[24]
Shi Y, Li J, Liu Y, et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression [J]. Mol Cancer,2015,14:51.
[25]
Shi Y, Lu J, Zhou J, et al. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells [J].Biochem Biophys Res Commun,2014,446(2):448-453.
[26]
Hou P, Zhao Y, Li Z, et al. LincRNA-ROR induces epithelial-tomesenchymal transition and contributes to breast cancer tumorigenesis and metastasis [J]. Cell Death Dis,2014,5: e1287.
[27]
Choudhry H, Albukhari A, Morotti M, et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival [J]. Oncogene,2015,34(34):4482-4490.
[28]
Kogo R, Shimamura T, Mimori K, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers [J]. Cancer Res,2011,71(20):6320-6326.
[29]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis [J]. Nature,2010,464(7291):1071-1076.
[30]
Bhan A, Hussain I, Ansari KI, et al. Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol [J]. J Mol Biol,2013,425(19):3707-3722.
[31]
Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes [J]. Science, 2010,329(5992):689-693.
[32]
Li D, Feng J, Wu T, et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma [J]. Am J Pathol,2013,182(1):64-70.
[33]
Zhao Z, Chen C, Liu Y, et al. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level [J]. Biochem Biophys Res Commun,2014,445(2):388-393.
[34]
Xu S, Sui S, Zhang J, et al. Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3KAKT pathway in breast cancer [J]. Int J Clin Exp Pathol, 2015,8(5):4881-4891.
[35]
Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis [J]. Cancer Cell,2015,27(3):370-381.
[36]
Pandey GK, Mitra S, Subhash S, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation [J]. Cancer Cell,2014,26(5):722-737.
[37]
Hu P,Chu J,Wu Y,et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2 [J]. Oncotarget,2015,6(32):32 410-32 425.
[38]
Jiang M, Huang O,Xie Z,et al. A novel long non-coding RNA-ARA:adriamycin resistance-associated [J]. Biochem Pharmacol, 2014,87(2):254-283.
[39]
Bida O, Gidoni M, Ideses D, et al. A novel mitosis-associated lncRNA, MA-linc1,is required for cell cycle progression and sensitizes cancer cells to Paclitaxel [ J]. Oncotarget, 2015, 6 (29):27 880-27 890.
[40]
Li Q, Yao Y, Eades G, et al. Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer [J].Oncogene,2014,33(20):2589-2600.
[41]
Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs [J]. Mol Cell,2013,52(1):101-112.
[42]
Wang Y, Xu Z, Jiang J, et al. Endogenous miRNA sponge lincRNARoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal [J]. Dev Cell,2013,25(1):69-80.
[43]
Hou P, Zhao Y, Li Z, et al. LincRNA-ROR induces epithelial-tomesenchymal transition and contributes to breast cancer tumorigenesis and metastasis [J]. Cell Death Dis,2014,5: e1287.
[44]
Amaral PP, Neyt C, Wilkins SJ, et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development[J]. RNA,2009,15(11):2013-2027.
[45]
Askarian-Amiri ME, Seyfoddin V, Smart CE, et al. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer[J]. PLoS One,2014,9(7):e102140.
[46]
Liu YR, Jiang YZ, Xu XE, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer [J]. Breast Cancer Res, 2016,18(1):33.
[47]
Shen X, Xie B, Ma Z, et al. Identification of novel long non-coding RNAs in triple-negative breast cancer [J]. Oncotarget,2015,6(25):21 730-21 739.
[48]
Augoff K, McCue B, Plow EF, et al. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer [J]. Mol Cancer,2012,11:5.
[49]
Eades G, Wolfson B, Zhang Y, et al. lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6[J]. Mol Cancer Res,2015,13(2):330-338.
[50]
Quek XC, Thomson DW, Maag JL, et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs [J].Nucleic Acids Res,2015,43:D168-173.
[1] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[2] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[3] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[4] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[5] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[6] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[7] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[8] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[9] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[10] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[11] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[14] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[15] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
阅读次数
全文


摘要