[1] |
孙艳, 石远凯. 临床肿瘤内科手册[M]. 北京:人民卫生出版社. 1987:237.
|
[2] |
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med,1997,3(7):730-737.
|
[3] |
Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA,2003,100(7):3983-3988.
|
[4] |
Watson CJ,Khaled WT.Mammary development in the embryo and adult:a journey of morphogenesis and commitment[J].Development,2008,135 (6):995-1003.
|
[5] |
Snyder EL,Bailey D,Shipitsin M,et al. Identification of CD44+/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies[J]. Lab Invest,2009,89(8):857-866.
|
[6] |
Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity[J]. Cancer Cell,2007,11(3):259-273.
|
[7] |
Tirino V, Camerlingo R, Franco R,et al. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer[J]. Eur J Cardio-thorac Surg,2009,36(3):446-453.
|
[8] |
Wright MH, Calcagno AM, Salcido CD, et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics[J]. Breast Cancer Res,2008,10(1):R10.
|
[9] |
Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells[J]. Nature,2006,439(7079):993-997.
|
[10] |
Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem cellassociated marker in lung cancer[J].Mol Cancer Res,2009,7(3):330-338.
|
[11] |
Morimoto K,Kim SJ,Tanei T,et al. Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression[J]. Cancer Sci,2009,100(6):1062-1068.
|
[12] |
Pontier SM,Muller WJ. Integrins in mammary-stem-cell biology and breast-cancer progression - a role in cancer stem cells[J]. J Cell Sci,2009,122(Pt2):207-214.
|
[13] |
Charafe-Jauffret E, Ginestier C,Birnbaum D, et al. Breast cancer stem cells: tools and models to rely on[J]. BMC Cancer,2009,9(25):202.
|
[14] |
Vaillant F, Asselin-Labat ML, Shackleton M, et al. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis[J]. Cancer Res,2008,68(19):7711-7717.
|
[15] |
DiMeo TA, Anderson K, Phadke P, et al. A novel lung metastasis signature links Wnt signaling with cancer cell selfrenewal and epithelial-mesenchymal transition in basal-like breast cancer[J]. Cancer Res,2009,69(13):5364.
|
[16] |
Korkaya H, Paulson A, Charafe-Jauffret E,et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling[J]. PLoS Biol,2009,7(6): e1000121.
|
[17] |
Wang XY,Yin Y,Yuan H,et al. Musashil modulatesmammary progenitor cell expansion through proliferin mediated activation of the Wnt and Notch pathways[J]. Mol Cell Biol,2008,28(11):3859-3889.
|
[18] |
Wang Z, Li Y, Banerjee S,et al. Emerging role of Notch in stem cells and cancer[J]. Cancer Letters,2009,279(1):8-12.
|
[19] |
Dando JS, Tavian M, Catelain C, et al. Notch/Delta 4 interaction in human embryonic liver CD34+ CD38- cells: positive influence on BFU-E production and LTC-IC potential maintenance[J]. Stem Cells,2005,23(4):550-560.
|
[20] |
Zardawi SJ, O'Toole SA, Sutherland RL, et al. Dysregulation of hedgehog, Wnt and Notch signalling pathways in breast cancer[J]. Histol Histopathol,2009,24(3):385-398.
|
[21] |
Harmes DC, DiRenzo J. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses[J]. Mammary Gland Biol Neoplasia,2009,14(1):19-27.
|
[22] |
Tanaka H, Nakamura M, Kameda C,et al. The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24-/low subpopulation and the side population of breast cancer cells[J]. Anticancer Res,2009,29(6):2147-2157.
|
[23] |
Kasper M, Jaks V, Fiaschi M,et al. Hedgehog signalling in breast cancer[J]. Carcinogenesis,2009,30(6):903-911.
|
[24] |
Hwang-Verslues WW, Chang KJ, et al. Breast cancer stem cells and tumor suppressor genes[J]. Formos Med Assoc,2008,107 (10):10.
|
[25] |
Vurusaner B, Poli G, Basaga H, et al. Tumor suppressor genes and ROS: complex networks of interactions[J]. Free Radic Biol Med,2011, doi:10.1016/j.freeradbiomed.2011.09.035.
|
[26] |
刘艳丽,张文,安杰,等. 多种耐药基因蛋白在乳腺癌和三阴乳腺癌中表达差别的研究[J]. 河北医药,2010,32(22):3128-3130.
|
[27] |
Tkocz D, Crawford NT, Buckley NE, et al.BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers[J]. Oncogene,2011, doi:10.1038/onc.2011.531.
|
[28] |
Johnson N, Cai D, Kennedy RD, et al. Cdk1 participates in BRCA1-dependent S phase checkpoint control in response to DNA damage[J]. Mol Cell,2009,35(3):327-339.
|
[29] |
Ginestier C, Liu S, Wicha MS,et al. Getting to the root of BRCA1-deficient breast cancer [J]. Cell Stem Cell,2009,5(3):229-230.
|
[30] |
Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2[J]. Nature,2008,451(7182):1111-1115.
|
[31] |
Cicalese A,Bonizzi G,Pasi CE,et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells[J]. Cell,2009,138(6):1083-1095.
|